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1 Introduction to Operator Algebras

1.1 ∗-algebras

Let H be a Hilbert space. We denote B(H) to be the space of operators on H: B(H) is
the set of T : H → H such that supξ∈(H)1 ‖T (ξ)‖ =: ‖T‖ < ∞, where (H)1 is the closed
unit ball. B(H) is an algebra.

Definition 1.1. An operator algebra is a vector subspace B ⊆ B(H) closed under
multiplication.

Given an operator T , we have an adjoint operator T ∗ which satisfies 〈T ∗ξ, η〉 =
〈ξ, Tη〉 for all ξ, η ∈ H. The adjoint has ‖T ∗‖ = ‖T‖. This defines an operation ∗ :
B(H)→ B(H) sending T 7→ T ∗. The ∗ operation satisfies

• (T + S)∗ = T ∗ + S∗

• (λT )∗ = λT ∗

• (TS)∗ = S∗T ∗

• (T ∗)∗ = T .

Definition 1.2. B ⊆ B(H) is a ∗-algebra of operators on B(H) if it is closed under the
∗ operation.

Example 1.1. Look at B(`2∞) = M∞(C). `2∞ has an orthonormal basis ei with (ei)j =
δi,j . Elements of B(`2∞) can be multiplied like infinite matrices, and the entries can be
determined by this orthonormal basis.

We always consider algebras with a unit. So B ⊆ B(X) will always contain the element
1B = idX ∈ B.

1.2 von-Neumann algebras and group von-Neumann algebras

Definition 1.3. A von-Neumann algebra is a ∗-algebra B ⊆ B(X) closed in the weak
operator topology given by the seminorms pξ,η(T ) = | 〈Tξ, η〉 | (Ti → T in the weak operator
topology if 〈Ti(ξ), η〉 → 〈T (ξ), η〉 for all ξ, η ∈ X).

Example 1.2. B(X) is a von-Neumann algebra.

Definition 1.4. An operator U ∈ B(X) is unitary if U∗ = U−1.

Example 1.3. A representation π : Γ → B(X) of a group Γ is called unitary if π(g) is
unitary for all g ∈ Γ. If π is unitary, then spanπ(Γ) is a ∗-algebra on X. Then the closure
of this space under the weak operator topology is a von-Neumann algebra.
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Denote `2(I) as `2 with an orthonormal basis indexed by I.

Example 1.4. Define the following representations of Γ

1. The regular representation is λ : Γ→ U(`2(Γ)) is λ(g)ξh = ξgh

2. Alternatively, right group multiplication induces the unitary representation ρ : Γ →
U(`2(Γ)) given by ρ(g)ξh = ξhg−1 .

Observe that [λ(g1), ρ(g2)] = 0. Let L(Γ) be the weak operator topology closure of
span(λ(Γ)), and let R(Γ) be the weak operator topology closure of span(ρ(Γ)). These
are left and right group von-Neumann algebras. One avenue of study to study the
map Γ 7→ L(Γ).

This has many applications. These operators arising from groups are related to dy-
namics and ergodic theory.

1.3 Factors and C∗-algebras

Definition 1.5. A von-Neumann algebra M is a factor if Z(M) = C1, where Z denotes
the center of the algebra.

Example 1.5. B(X) and L(Γ) are factors.

Here is a question that appeared early in the theory of von-Neumann algebras: Are
there any other von-Neumann factors than B(X)?1 This is fundamental to understanding
how much commutation there is in operator algebras. The answer is yes. In fact, L(F2)
and L(S∞) are not isomorphic to B(X).

These two are infinite dimensional factors, and they have a trace functional on them,
τ : M → C which is linear and continuous such that τ(x, y) = τ(yx) for all x, y ∈ M . In
general, if X is infinite dimensional, B(X) has no trace defined everywhere.

Another question: Can we axiomatize the theory of von-Neumann algebras? We have
a Banach-algebra with the ∗-operation, and we have the norm with ‖T ∗‖ = ‖T‖. Can we
construct a Hilbert space only from this information?2

Definition 1.6. A ∗-algebra B ⊆ B(X) of operators on X is called a (concrete) C∗-
algebra.

In fact, these satisfy ‖T ∗T‖ = ‖T‖2 for all T . (This does imply that ‖T ∗‖ = ‖T‖.)
1von-Neumann asked this question in 1935. He gave this question to a postdoc. Prior to this, he knew

that any von-Neumann algebra decomposes via a measurable field of matrices as M ∼=
∫
X
Mt dt. They

solved the problem in 1936.
2Gelfand and Naimark worked on this in 1940-1943. They did not succeed, and Grothendieck tried in

the 50s.
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Definition 1.7. A Banach algebra with ∗ satisfying ‖x∗x‖ = ‖x‖2 is called an abstract
C∗-algebra

Theorem 1.1 (G-N + Segal, 1943). If B is an abstract C∗ algebra, then it is a concrete
C∗-algebra.
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2 Introduction to C∗-Algebras

2.1 Recap

Recall: We are interested in the following objects.

Definition 2.1. A *-algebra M is an algebra with an involution ∗ (called the adjoint)
such that if T ∈M , then T ∗ ∈M .

Definition 2.2. A von Neumann algebra M ⊆ B(H) is a *-algebra of operators on a
Hilbert space with 1 = idH ∈M which is closed in the weak operator topology.

Definition 2.3. A C∗-algebra is a *-algebra of operators M0 ⊆ B(H) with 1M0 = idH
which is closed in the operator norm.

Remark 2.1. Since the weak operator topology is weaker than the norm topology, von
Neumann algebras are C∗-algebras.

Definition 2.4. A Banach algebra is a Banach space with multiplication such that ‖xy‖ ≤
‖x‖‖y‖.

We will aim to prove the following.

Theorem 2.1. If M is a Banach algebra (with 1M ) and with an involution * satisfying
‖x∗x‖ = ‖x‖2 for all x ∈ M , then there is a injective, isometric *-algebra morphism
θ : M → B(H). In other words, any algebra satisfying these axioms is a concrete C∗-
algebra.3

2.2 Involutive algebras

Definition 2.5. IfM is an algebra (over C), then an involution onM is a map ∗ : M →M
satisfying

1. (λx)∗ = λx∗

2. (x+ y)∗ = x∗ + y∗

3. (xy)∗ = y∗x∗

4. (x∗)∗ = x.

Example 2.1. B(H) has the adjoint map as an involution.

Example 2.2. If X is compact, C(X) is an algebra with the involution of complex conju-
gation given by f(x) = f(x). If we take C0(X) where X is only locally compact, then we
still get an algebra, but it does not have an identity.

3We can consider these to be the “abstract C∗-axioms.”
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Example 2.3. Let G be a group. Then L1(G) is an algebra with the product f · g of
convolution. We have the involution f∗(g) = f(g−1).

Proposition 2.1. The adjoint satisfies the following properties:

1. 1∗ = 1.

2. If x is invertible (x ∈ Inv(M)), then x∗ ∈ Inv(M), and (x∗)−1 = (x−1)∗.

Definition 2.6. If x = x∗, we call x Hermitian. We denote the set of Hermitian elements
as Mh = {x ∈M : x = x∗}.

Definition 2.7. An element x ∈M is normal if x∗x = xx∗.

In this case, the ∗-algebra generated by x is commutative.

Definition 2.8. An element x ∈ M is unitary if x∗x = xx∗ = 1 (i.e. x is invertible an
x−1 = x∗. We denote U(M) to be the set of unitary elements, which is a subgroup of
Inv(M).

Definition 2.9. An element x ∈M is an isometry if x∗x = 1.

Remark 2.2. In general, this does not necessarily mean that x is unitary. For example,
we can take the map x : `2(N)→ `2(N) given by (x0, x1, x2, . . . ) 7→ (0, x1, x2, x3, . . . ).

Definition 2.10. An element x ∈M is an orthogonal projection if x2 = x = x∗.

Definition 2.11. An element x ∈M is a partial isometry if x∗x and xx∗ are projections.

Proposition 2.2. We can always decompose x = Rex + i Im(x), where Rex, Imx are
Hermitian via

Re(x) =
x+ x∗

2
, Im(x) =

x− x∗

2i
.

Definition 2.12. If x ∈ M , the spectrum of x is the set Spec(x) = {x ∈ C : λ1 −
x is not invertible in M}. We also call ρ(X) = {λ : λ1− x is invertible} the resolvent of
x.

Proposition 2.3. Spec(x∗) = (Spec(x))∗, and Spec(x−1) = (Spec(x))−1.

Definition 2.13. Functionals on an involutive4 algebra M are linear maps ϕ : M → C.
The involution on functionals is given by ϕ∗(x) = ϕ(x∗).

4We call them involutive because using the term *-algebra makes people strictly think of operator
algebras.
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2.3 Normed involutive algebras

Definition 2.14. A normed involutive algebra M is an involutive algebra with a norm
such that ‖xy‖ ≤ ‖x‖‖y‖ and ‖x∗‖ = ‖x‖ for all x ∈M . This is a Banach algebra if M
is complete.

Definition 2.15. If M is a Banach space, we denote the dual space M∗ to be the set of
continuous linear functionals on M .

Proposition 2.4. ‖ϕ∗‖ = ‖ϕ‖ for all ϕ ∈M∗. Also, if ϕ = ϕ∗, then ‖ϕ|Mh
‖ = ‖ϕ‖.

Notation: If X is a Banach space and r > 0, then we denote the closed unit ball as
(X)r := {x ∈ X : ‖x‖ ≤ r}.

Definition 2.16. A Banach algebra M with involution satisfying ‖x∗x‖ = ‖x‖2 for all
x ∈M is called an (abstract) C∗-algebra. This condition is called the C∗-axiom.

Remark 2.3. It is enough to show that ‖x∗x‖ ≥ ‖x‖2 for all x.

Proposition 2.5. ‖x‖ = supy∈(M)1 ‖xy‖. This gives us an isometric embedding of M →
B(M) given by x 7→ Lx, where Lx(y) = xy.

Proposition 2.6. If M 6= 0, then ‖1‖ = 1.

Proposition 2.7. For any u ∈ U(M), ‖u‖ = 1.

2.4 Spectra in Banach algebras

Definition 2.17. The spectral radius of x is R(x) = sup{|λ| : λ in Spec(x)}.

Proposition 2.8. R(x) ≤ ‖x‖.

If M is a Banach algebra, x ∈ M and f is an entire function on C, then f(x) =∑∞
n=0 a− nxn makes sense.

Example 2.4. We can define exp(x) =
∑∞

n=0 x
n/n!.

Proposition 2.9. If M has an involution and h ∈Mh, then exp(ih) = exp(−ih).

Proposition 2.10. Let M be an involutive Banach algebra, Then

1. If h = h∗, then exp(ih) ∈ U(M).

2. If u ∈ U(M), then Spec(u) ⊆ T.

3. If h = h∗, then Spec(h) ⊆ R.

Proof. 1. u = exp(ih) has u∗ = exp(−ih) as its inverse.
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2. Spec(u) = (Spec(u−1)−1, and ‖R(u)‖ ≤ ‖u‖ and ‖R(u−1)‖ ≤ ‖u−1‖.

3. Spec(h) = Spec(h∗) = Spec(h).

Lemma 2.1. Let M be a Banach algebra, and let x ∈ M iwth ‖1 − x‖ < 1. Then x is
invertible, and ‖x−1‖ ≤ 1/(1− ‖1− x‖).

Proof. The series y =
∑∞

n=0(1 − x)n is convergent in norm and hence makes sense in M .
Then

xy = (1− (1− x))

∞∑
n=0

(1− x)n = lim(1− (1− x)n+1) = 1,

so y is an inverse for x.

Corollary 2.1. Inv(M) is open, and the map Inv(M) → Inv(M) sending x 7→ x−1 is
continuous.

Proof. Let x be invertible, and let ‖y − x‖ ≤ 1/‖x−1‖. Then

‖x−1y − 1‖ ≤ ‖x−1‖‖y − x‖ < 1,

so x−1y is invertible by the lemma. So y is invertible.
Continuity follows from x−1 − y−1 = x−1(y − x)y−1.

Corollary 2.2. Spec(x) ⊆ (M)‖x‖.

Proof. If |λ| > ‖x‖, then 1 > ‖λ−1x‖, so 1− λ−1x is invertible by the lemma. So λ− x is
invertible. So λ /∈ Spec(x).

Theorem 2.2. Spec(x) is compact and nonempty.

Proof. Spec(x) is closed by continuity of y 7→ y−1. It is bounded, so it is compact. To
show that Spec(x) 6= ∅, let F : ρ(x) → M be F (λ) = (λ1 − x)−1. We claim that F is
analytic5: in fact, we have d

dλF (λ) = −(λ1 − x)−2. So if Spec(x) = ∅, then F is entire.
But lim|λ|→∞ ‖F (λ)‖ = 0, as

‖(λ− x)−1‖ = |λ−1|‖(1− x/λ)−1‖ ≤ 1

|λ|
1

1− ‖x/λ‖
→ 0.

By Liouville’s theorem, F is constant, so F = 0.6 But this is impossible.

Theorem 2.3 (Šilov). Let M be a Banach slagebra, and let N ⊆ M be a sub Banach
algebra containing 1M . If x ∈ N , then the boundary of SpecN (x) is a subset of of the
boundary of SpecM (x).

5This is in the sense of holomorphic functional calculus.
6If you are uncomfortable with using Liouville’s theorem when F is operator-valued, use this trick. Take

any ϕ ∈M∗. Then λ 7→ ϕ(F (λ)) is analytic, entire, and = 0. Using Hahn-Banach, it follows that F = 0.
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Remark 2.4. We always have SpecM (x) ⊆ SpecN (x). This theorem gives part of the
other direction.

Proof. It suffices to show that the boundary of SpecN (x) is contained in SpecM (x). Let
λ0 ∈ ∂ SpecN (x), and let {λn} ⊆ ρN (x) with λn → λ0. If for some n,m, we were to have
‖(λn−x)−1‖ < 1/|λ0−λn|, it would follow that ‖(λ0−x)−(λn−x)‖ < 1/‖(λn−x)−1‖. Thus,
λ0−x is invertible in N by the lemma. This is a contradiction, so ‖(λn−x)−1‖ → ∞. Now
if λ0 /∈ SpecM (x), then ‖(λ− x)−1‖ is bounded for λ close enough to λ0. This contradicts
‖(λn − x)−1‖ → ∞.

Lemma 2.2 (Spectral radius formula). R(x) = limn→∞ ‖xn‖1/n.

We will prove this later.

2.5 Contractivity of morphisms into C∗-algebras

Proposition 2.11. If N ⊆M are C∗-algebras with 1M ∈ N and x ∈ N , then SpecN (x) =
SpecM (x).

Proof. Assume first that x = x∗. Then SpecN (x),SpecM (x) ⊆ R. Then Šilov’s theorem
implies that SpecN (x) = SpecM (x). For general x, invertibility of x in M implies invert-
ibility of x∗x in M . This implies that x∗x is invertible in N , which provides a y ∈ N such
that (yx∗)x = 1. So x is invertible in N .

Proposition 2.12. Let M be a Banach involutive algebra, and let N be a C∗-algebra. Let
π : M → N be a unital *-morphism.7

Proof. For y ∈ N with y = y∗, we have ‖y2‖ = ‖y∗y‖ = ‖y‖2. Iterating thism we get
‖y2n‖1/2n = ‖y‖. The left hand side tends to R(y), so R(y) = ‖y‖. If x ∈ M , we have
SpecN (π(x)) ⊆ SpecM (x) (since π is an algebra homomorphism, it preserves invertibility).
So we get RN (π(x)) ≤ RM (x) ≤ ‖x‖. So

‖π(x)‖2 = ‖π(x∗x)‖ = RN (π(x∗x)) ≤ ‖x∗x‖ ≤ ‖x‖2.

7This means it is an algebra homomorphism. This condition says nothing about the norm, a priori.
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3 The Spectral Radius Formula And The Gelfand Transform

3.1 Characters of Banach algebras

Last time, we used the following result to show that morphisms to C∗-algebras are con-
tractive.

Lemma 3.1 (Spectral radius formula). R(x) = limn→∞ ‖xn‖1/n.

This is really a result about commutative Banach algebras, so to prove it we will discuss
the commutative case.

Definition 3.1. Let M be a Banach algebra (with 1M ). A character on M is a nonzero
linear ϕ : M → C such that ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ M . We denote XM as the
space of all characters on M .

Proposition 3.1. Let M be a Banach algebra. Any ϕ ∈ XM is automatically continuous
with ‖ϕ‖ = 1.

Proof. For any x ∈M , x− ϕ(x) · 1 ∈ ker(ϕ). Write x = (x− ϕ(x) · 1) + ϕ(x) · 1. Then

‖ϕ‖ = sup
x∈(M)1

|ϕ(x)| = sup
y∈ker(ϕ)
λ 6=0

|ϕ(y + λ · 1)|
‖y + λ · 1‖

= sup
y∈ker(ϕ)
λ 6=0

1

‖(y/λ) + 1‖
.

If ‖y′ + 1‖ < 1, then y′ is invertible, which means y′ /∈ ker(ϕ). So this equals 1.

Corollary 3.1. XM ⊆ (M∗)1 is σ(M∗,M)-compact (weak* compact).

Proof. XM is closed in the weak* topology.

3.2 The Gelfand transform

Definition 3.2. The Gelfand transform Γ : M → C(XM ) is given by Γ(x)(ϕ) := ϕ(x).

Proposition 3.2. The Gelfand transform has the following properties:

1. Γ is an algebra morphism.

2. ‖Γ(x)‖∞ ≤ ‖x‖.

Theorem 3.1. If M is a Banach algebra such that any x 6= 0 is invertible (a division
algebra), then M = C.

Proof. If x ∈M , then SpecM (x) 6= ∅, so let λx ∈ SpecM (x). Then x−λx1 is not invertible,
so x− λx = 0. So λx1 = x.
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Proposition 3.3. If M is a Banach algebra and J ⊆ M is a closed, 2-sided ideal, then
M/J has a Banach algebra structure given by ‖x+ J‖ = infy∈J ‖x+ y‖.

Proposition 3.4. If M is a commutative Banach algebra, then there is a correspondence
between XM and the space of maximal, 2-sided ideals of M given by ϕ 7→ ker(ϕ).

Proof. Let ϕ ∈ XM , and let J be an ideal such that ker(ϕ) ( J . Let x ∈ J \ ker(ϕ). Then
x = (x− ϕ(x) · 1) + ϕ(x) · 1, so 1 is in the span of x and ker(ϕ), which is contained in J .
So J is an ideal containing M and hence equals M . That is, ker(ϕ) is maximal.

If J is a maximal ideal in M , then J is an ideal (using the ‖1 − x‖ < 1 =⇒ x is
invertible lemma), so J is closed. Then let ϕJ : M →M/J be the natural projection map.
But since J is maximal, M/J is a division algebra. So M/J = C. This means J = ker(ϕJ),
where ϕJ is a character.

Proposition 3.5. If M is a commutative Banach alagebra, then XM = ∅ and x ∈ M is
invertible if and only if Γ(x) is invertible.

Proof. If x ∈M is invertible, then Γ(x−1) is the inverse of Γ(x). If x ∈M is not invertible,
then xM is a proper, 2-sided ideal in M . Let J ⊆M be a maximal 2-sided ideal containing
xM . Then ϕJ(x) = 0, so Γ(x) is not invertible.

We can summarize our results in the following theorem.

Theorem 3.2. Let X be a commutative Banach algebra.

1. XM 6= ∅.

2. Γ is an algebra homomorphism.

3. ‖Γ(x)‖∞ ≤ ‖x‖ for all x ∈M .

4. x ∈ Inv(M) ⇐⇒ Γ(x) ∈ Inv(C(XM )).

3.3 The spectral mapping theorem and the spectral radius formula

Corollary 3.2. Let M be a commutative Banach algebra, and let x ∈M . Then SpecM (x) =
Ran(R(x))) = SpecC(XM )(Γ(x)). Thus, RM (x) = ‖Γ(x)‖∞.

Proof.

λ /∈ SpecM (x) ⇐⇒ λ− x is invertible in M

⇐⇒ λ− Γ(x) is invertible in C(XM )

⇐⇒ λ /∈ Range(Γ(x)).

Corollary 3.3 (Spectral mapping theorem). Let M be a Banach algebra, let x ∈M , and let
f : C→ C be an entire function with f(z) =

∑∞
n=0 anz

n. Then SpecM (f(x)) = f(Spec(x)).

14



Remark 3.1. The function f(x) makes sense, as the sum is absolutely convergent in norm.
The radius of convergence is (lim sup |an|1/n)−1 =∞).

We can now prove the spectral radius formula.

Proof. Let M0 be the Banach algebra generated by 1, x, f(x), (x− λ)−1 for all λ ∈ ρM (x),
and (f(x)−µ)−1 for all µ ∈ ρM (f(x)), where ρ denotes the resolvent. Then M0 is commu-
tative, so SpecM0

(x) = SpecM (x) and SpecM0
(f(x)) = SpecM (f(x)). So we may assume

that M is commutative.
From the corollary, we have SpecM (xn) = (SpecM (x))n (using the Gelfand transform).

So RM (x)n = RM (xn) ≤ ‖xn‖. We get that RM (x) ≤ lim infn ‖xn‖1/n. Let G(λ) =
−λ
∑∞

n=0
xn

λn . This sum converges absolutely for |λ| > ‖x‖ and converges to (x−λ)−1. But
for |λ| > RM (x) and ϕ ∈ M∗, ϕ((x − λ)−1) is analytic, and λ 7→ ϕ(G(λ)) is analytic and
agrees with ϕ((x−λ)−1) there. So we conclude that for every ϕ ∈M∗, limn→∞ ϕ(λ1−nxn) =
0 whenever |λ| > RM (x).

Apply the uniform boundedness principle to λ1−nxn ∈ M , viewed as an element of
M∗∗. So there exists K(λ) > 0 such that ‖λ1−nxn‖ ≤ K(λ) for all n. So

lim sup
n→∞

‖xn‖1/n ≤ lim sup
n→∞

K(λ)1/n|λ|(n−1)/n = |λ|

for each |λ| > RM (x).

Corollary 3.4. Let M be a commutative Banach algebra. Then the Gelfand transform
Γ : M → C(XM ) is an isometry if and only if ‖x2‖ = ‖x‖2 for all x ∈M .

Proof. Suppose Γ is an isometry. We have R(x)2 = R(Γ(x))2 = ‖Γ(x)‖2, and R(x2) =
R(Γ(x2)) = ‖Γ(x2)‖. These are equal, so ‖x‖ = ‖Γ(x)‖ =⇒ ‖x2‖ = ‖x‖2.

Conversely if ‖x2‖ = ‖x‖2, then ‖x‖ = R(x) by the spectral radius formula (we did this
argument before).

3.4 Characterization of commutative C∗-algebras

Recall the Stone-Weierstrass theorem.

Theorem 3.3 (Stone-Weierstrass). Let X be compact, and let M ⊆ C(X) be a norm-
closed, *-closed subalgebra with 1 ∈M that separates points (i.e. for all t1 6= t2 ∈ X, there
is an f ∈M such that f(t1) 6= f(t2)). Then M = C(X).

Theorem 3.4 (Gelfand). Let M be a commutative C∗-algebra.

1. If ϕ ∈ XM , then ϕ = ϕ∗; i.e. ϕ(x∗) = ϕ(x)∗ for all x.

2. Γ : M → C(X) is a *-algebra isometric isomorphism.
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Proof. If x = x∗ ∈M , then ϕ(x) ∈ SpecM (x) ⊆ R.
By the first part, Γ(M) is *-closed. By definition Γ(M) separates points: ϕ1 6= ϕ2

means that there is an x usch that ϕ1(x) 6= ϕ2(x). By the Stone-Weierstrass, Γ(M) = X.
By the C∗-algebra axiom, ‖x2‖ = ‖x‖2, so Γ is isometric.

3.5 Continuous functional calculus

Lemma 3.2. Let M be a commutative C∗-algebra. If x ∈ M and M is generated by x,
then XM ' Spec(x) via ϕ 7→ ϕ(x).

Example 3.1. Let T ∈ B(H) be normal (T ∗T = TT ∗). Then the spectrum of C∗({T})
can be identified with Spec(T ).

So if M is a C∗-algebra, x ∈ M is normal, and f ∈ C(Spec(x)), we can think of
f(x) ∈M by f(x) = Γ−1(f). This is continuous functional calculus.
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4 Correspondence Between Homeomorphisms and C∗-Algebra
Morphisms

4.1 Recap: Homeomorphism between XM and Spec(x)

Recall our results from last time.

Proposition 4.1. Let M be a commutative Banach algebra (over C). Then SpecM (x) =
SpecC(XM )(Γ(x)).

Proposition 4.2. Let M be a C∗-algebra, and let M0 ⊆ M be a sub C∗-algebra. Then
SpecM (x) = SpecM0

(x).

Theorem 4.1 (Gelfand). Let M be a commutative C∗-algebra.

1. If ϕ ∈ XM is a character, then ‖ϕ‖ = 1 and ϕ = ϕ∗.

2. Γ : M → C(XM ) is a ∗-algebra isomorphism.

Proposition 4.3. Let M be a C∗-algebra generated by x ∈ M and 1.8 Then Ψ : XM '
Spec(x) via ϕ 7→ ϕ(x) is a homeomorphism of compact spaces.

Remark 4.1. Note that ϕ(x) = Γ(x)(ϕ).

Proof. The map is surjective and well-defined by the first proposition above. Also, Ψ is
continuous. If Ψ(ϕ1) = Ψ(ϕ2), then ϕ1(x) = ϕ2(x). But this implies that ϕ1(x∗) = ϕ2(x∗).
So ϕ1 = ϕ2 on all of M , as x generates M . So Ψ is injective.

4.2 Correspondence between homeomorphisms and C∗-algebra morphisms

Remark 4.2. If ∆ : Z → Y is a map between compact spaces, then we get a map
∆∗ : C(Y )→ C(Z) given by ∆∗(f) = f ◦∆. The map ∆∗ is a a ∗-algebra homomorphism.

Conversely, if θ : M → N is a morphism of unital C∗-algebras, we can view θ :
C(XM )→ C(XN ). Then there is a canonical ∆ : XN → XM such that θ = ∆∗ as follows.
If ϕ : N → C is multiplicative, then ϕ ◦ θ : M → C is multiplicative. So ∆(ϕ) = ϕ ◦ θ is a
well-defined map XM → XN . Then ∆∗ = θ. We denote this ∆ by θ∗ (so (θ∗)

∗ = θ).
Moreover, θ is surjective if and only if θ∗ is injective and is injective if and only if θ∗ is

surjective. Thus, θ is an C∗-algebra isomorphism if and only if θ∗ is a homeomorphism.

This is very important! It says that any homeomorphism between compact spaces
corresponds to a *-algebra morphism between C∗-algebras.

Proposition 4.4. If θ is surjective, then θ∗ is injective.

8Alternatively, we can say, “Let M0 be the sub C∗-algebra of M generated by x and 1.
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Proof. Let ϕ1 6= ϕ2 ∈ XN . Then ϕ1 ◦ θ 6= ϕ2 ◦ θ.

Proposition 4.5. If θ is injective, then θ∗ is surjective.

Proof. We get that θ : M → N is isometric, as ‖y∗y‖M = SpecM (y∗y) = SpecN (y∗y) =
‖y∗y‖N since y∗y is self-adjoint; then the C∗-condition gives that ‖y‖M = ‖y‖N .

Take a ϕ ∈ XM and consider the corresponding maximal ideal Mϕ ⊆M . Then Nθ(Mϕ)
is a closed proper ideal in N (proper because it does not contain 1). Any maximal ideal
M ′ containing Nθ(Mϕ) has the property that its character ϕ′ = ϕM ′ ∈ XN satisfies
θ∗(ϕ

′) = ϕ.

4.3 Continuous functional calculus

Let’s be a bit more clear about a point made last lecture, using this viewpoint we have
established.

Remark 4.3. Let M be a commutative C∗-algebra generated by x (so x is normal). Then
M ' C(XM ) via Γ. Note that since ϕ(x) = Γ(x)(ϕ), using this identification, the map
(Ψ−1) ∗ ◦Γ sends xn 7→ (z 7→ zn) and (x∗)m 7→ (z 7→ zm). So for f ∈ C(Spec(x)), we
can define f(x) := ((Ψ−1) ∗ ◦Γ)−1(f). This is called continuous functional calculus for
normal elements in a C∗-algebra.
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5 The GNS Construction

5.1 The idea: turning abstract C∗-algebras in to concrete ones

Let M be a C∗-algebra (with 1M ) and x = x∗ ∈Mh. Then the C∗-algebra generated by x
can be identified with Spec(x). Then denote

x+ = f+(x), x− = f−(x),

where
f+(x) = max{x, 0}, f−(x) = −min{x, 0}.

Then x = x+ − x−, x+x− = 0, and we can also define |x| = x+ + x− = (x2)1/2. If
Spec(x) ⊆ [0,∞), then we can define

√
x using functional calculus.

Lemma 5.1. If x = x∗ ∈ M and ‖1 − x‖ ≤ 1, then Spec(x) ⊆ [0,∞). Conversely, if
Spec(x) ⊆ [0,∞), then ‖1− x‖ ≤ 1.

Proof. This follows from functional calculus.

Lemma 5.2. Let S, T be elements of a Banach algebra. Then Spec(ST )∪{0} = Spec(TS)∪
{0}.

Proof. If λ 6= 0 and TS − λ1 has inverse u, then TSu = λu+ 1, so

(ST − λ1)(SuT − 1) = STSuT − ST − λ− λSuT + λ1 = λ1.

Recall: We want to show that if M is a C∗-algebra, there is an isometric embedding
π : M → B(H), where H is a Hilbert space; that is, every abstract C∗-algebra is a concrete
C∗-algebra. To get the isometry property, we only need ‖π(x)‖2 = ‖x‖2, which means we
need ‖π(x∗x)‖ = ‖x∗x‖. This is the spectral radius of x∗x and π(x∗x), so we need only
show that π is injective.

Suppose we have that if x 6= 0 then there is a πx : M → B(Hx) with πx(x) 6= 0. Then
we can take

⊕
x πx : M →

⊕
B(Hx). So we only need to find πx for each x. To find πx, we

claim that all we need is a functional ϕ which has ϕ(y∗y) ≥ 0 for y ∈ M and ϕ(x∗x) 6= 0.
Then we will be able to get a Hilbert space by looking at M itself with the inner product
〈y, x〉ϕ = ϕ(y∗x) (this is a Hilbert space if we mod out by some equivalence relation). To
find a functional ϕ, we will need to use Hahn-Banach.

5.2 Characterizing positive elements in a C∗-algebra

Proposition 5.1 (Positive elements in C∗-algebras). Let M be a C∗-algebra, and let x =
x∗ ∈Mh. The following are equivalent:

1. Spec(x) ⊆ [0,∞).

19



2. x = y∗y for some y ∈M .

3. x = h2 for some h ∈Mh.

Also, if we denote M+ to be the set of elements satisfying these conditions, then M+ is a
closed, convex cone in Mh (x ∈ M+, λ ≥ 0 =⇒ λx ∈ M+ and x, y ∈ M+ =⇒ x + y ∈
M+). Moreover, M+ ∩ (−M+) = {0}.

Proof. Let P be the set of elements in Mh satisfying condition 1.
(1) =⇒ (3): Take h =

√
x by functional calculus.

(3) =⇒ (2): Take y = y∗ = h.
(3) =⇒ (1): Since h is self-adjoint, Spec(h) ⊆ R. Then we have Spec(h2) =

(Spec(h))2 ⊆ [0,∞).
(2) =⇒ (3): Write y∗y = (y∗y)+ − (y∗y)− := u2 − v2. Then

(yv)∗(yv) = v(y∗y)v = v(u2 − v2)v = −v4

has spectrum ⊆ (−∞, 0]. Let yv = s+ it with s, t ∈Mh. Then

(yv)(yv)∗ = (s− it)(s+ it)︸ ︷︷ ︸
s2+t2

+ (s+ it)(s− it)︸ ︷︷ ︸
s2+t2

,

so if P is a convex cone, then this is in P . Then also (yv)∗(yv) ∈ P (because Spec(TS) ∪
{0} = Spec(ST )∪ {0}). So we get that Spec((yv)∗(yv)) = 0, which means that yv = 0. So
v = 0.

To show that P is a cone, we use that for x ∈ Mh, x ∈ P ⇐⇒ ‖‖x‖(1 − x)‖ ≤ 1
(from the lemma before). This implies that P is closed. On the other hand, if x ∈ P and
λ > 0, then λx ∈ P by functional calculus. And if x, y ∈ P (and now we can assume
‖x‖, ‖y‖ ≤ 1), then ∥∥∥∥1− x+ y

2

∥∥∥∥ ≤ 1

2
‖1− x‖︸ ︷︷ ︸
≤1

+
1

2
‖1− y‖︸ ︷︷ ︸
≤1

≤ 1,

so x+y
2 ∈ P . It follows that P is a closed, convex cone. This completes the proof.

So from now on, if M is a C∗-algebra, then we denote M+ to be the cone of positive
elements.

5.3 Positive linear functionals

Definition 5.1. A functional ϕ : M → C on an involutive algebra is positive if ϕ(x∗x) ≥ 0
for all x ∈M and ϕ(M+) ⊆ [0,∞).

Definition 5.2. A state9 on an involutive Banach algebra is a positive continuous func-
tional with ‖ϕ‖ = 1.

9This terminology comes from physics.
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Proposition 5.2. If M is an involutive algebra and ϕ is a positive functional, then M has
a pre-Hilbert space structure Hϕ with the pre-inner product 〈x, y〉ϕ = ϕ(y∗x).

Corollary 5.1. Let Iϕ := {x ∈ M : ϕ(x∗x) = 0}. M/Iϕ is an inner product space with
〈·, ·〉ϕ. The completion is a Hilbert space.

Proof. We just need Iϕ to be a vector space. We have the Cauchy-Schwarz inequality:
we have for all λ ∈ C, 〈x+ λy, x+ λy〉 ≥ 0, so the discriminant is ≤ 0; this trans-
lates into the desired inequality. Now Iϕ is a vector space because we have 〈x, y〉 =
1
4

∑3
k=0 i

k
〈
x+ iky, x+ iky

〉
ϕ
.

Proposition 5.3. Iϕ is a left M -ideal. That is, if y ∈ Iϕ, then xy ∈ Iϕ for any x ∈M .

Lemma 5.3. If M is a Banach algebra and x ∈ (M)1, with x = 1 + x′, then the series

h = 1 +
1

1!
· 1

2
x′ +

1

2!
· 1

2

(
1

2
− 1

)
(x′)2 + · · ·+ 1

n!

(
1

2
− 1

)
· · ·
(

1

2
− (n− 1)

)
(x′)n + · · ·

is absolutely convergent with h2 = x = 1 + x′. Moreover, if x is self-adjoint, then so is h.

Proposition 5.4. If M is an involutive Banach algebra and ϕ is positive on M , then ϕ
is continuous and ‖ϕ‖ = ϕ(1).

Proof. By Cauchy-Schwarz, |ϕ(1x)|2 ≤ ϕ(1)ϕ(x∗x). If y = y∗ and ‖y‖ ≤ 1, then, by the
lemma, we have 1 − y = h2 with h = h∗. Given this representation, ϕ(x∗x) ≤ ϕ(1), so
|ϕ(x)| ≤ ϕ(1).

Corollary 5.2. If M is an involutive Banach algebra with 1M , then the space of states
S(M) is convex and weakly compact in (M∗)1.

Proposition 5.5. Let M be an involutive Banach algebra, and let ϕ be positive. Then for
all x, y ∈M ,

|ϕ(y∗xy)| ≤ ‖x‖ϕ(y∗y).

Proof. The functional ϕy(x) := ϕ(y∗xy) is positive. So |ϕx(x)| ≤ ϕy(1)‖x‖. We then have
|ϕ(y∗xy)| ≤ ϕ(y∗y)‖x‖.

5.4 The GNS construction

Corollary 5.3 (GNS10 construction). Let M be an involutive Banach algebra, and let ϕ be
positive. Then πϕ : M → B(M/I) given by πϕ(x)(ŷ) = x̂y is an isometric *-isomorphism
of algebras.

10This is Gelfand, Naimark, and Segal. Gelfand and Naimark only proved it for the commutative case.
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Proof. We have

‖πϕ(x)(ŷ)‖2 = ϕ(y∗x∗xy) ≤ ‖x∗x‖ϕ(y∗y) ≤ ‖x‖2‖ŷ‖M/Iϕ .

So ‖πϕ(x)‖ ≤ ‖x‖, so πϕ(x) is continuous and extends to all of M/Iϕ. We also have

πϕ(x1x2) = πϕ(x1)πϕ(x2),

πϕ(x∗) = πϕ(x)∗.

Such a map πϕ is called a representation.

Proposition 5.6. If M is a C∗-algebra, then ϕ is positive if and only if ‖ϕ‖ = ϕ(1).

Proof. ( =⇒ ): We have already shown this.
( ⇐= ): If ϕ(1) = ‖ϕ‖ = 1 and x ≥ 0 in M , suppose ϕ(x) 6≥ 0. Then there exists

a disc D ⊆ C centered at some z0 ∈ C such that Spec(x) ⊆ D but ϕ(x) /∈ D. Thus,
Spec(x− z01) ⊆ BR(0), and x− z01 is normal. So ‖x− z01‖ ≤ R, and

|ϕ(x)− z0| = |ϕ(x− z0)| ≤ ‖ϕ‖‖x− z0‖ ≤ ‖x− z0‖ ≤ R.

This is a contradiction.

It remains to show that we can find enough positive linear functionals. We will finish
this next time.
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6 GNS Construction and Topologies on B(H)

6.1 Every C∗-algebra is an operator algebra

Recall the GNS construction: Let M be a C∗ algebra, and let ϕ be a positive functional.
We get a Hilbert space Hϕ with 〈x, y〉ϕ = ϕ(y∗x) and a representation πϕ(x)(ŷ) = x̂y.

Remark 6.1. Our representation uses left multiplication, but there is no preference. If
we take 〈x, y〉 = ϕ(xy∗), then we could use right multiplication for our representation π.

This construction gives us ξϕ = 1̂M . This gives Hϕ = sπϕ(M)ξϕ. We call ξϕ a cyclic
vector for the representation πϕ.

Lemma 6.1. If Hi is a Hilbert space for all i and Ti ∈ B(Hi) with sup ‖Ti‖ < ∞, then⊕
i Ti ∈ B(Hi), where (

⊕
i Ti)(

⊕
i ξi) =

⊕
i T (ξi).

Theorem 6.1 (GNS). If M is a C∗-algebra, there exists an isometric, unital, *-algebra
morphism π : M → B(H), where H is a Hilbert space.

Proof. If πi : M → B(Hi) are representations for all i, we can define π =
⊕

i πi : M →
B(
⊕

iHi) by π(x) =
⊕

i πi(x). The inner product on
⊕

iHi is 〈(ξi)i, (ηi)i〉 =
∑

i 〈ξi, ηi〉Hi .
Injective implies isometric, so it suffices to find a 1 to 1 representation. So it suffices to
show that for any x 6= 0 in M , there exists πx : M → B(Hx) such that πx(x) 6= 0. By the
GNS construction, it suffices to get a positive functional ϕ on M such that ‖πϕ(x)1̂‖ =
ϕ(x∗x) 6= 0.

The subspace M+ is closed and convex in Mh and does not contain −x∗x. By Hahn-
Banach, there exists a continuous ϕ : Mh → R and an α ∈ R such that ϕ(M+) < [α,∞)
and ϕ(−x∗x) < α. Since 0 ∈M+, 0 ∈ [α,∞), making α ≤ 0. If α > 0, then λy ∈M+ =⇒
ϕ(λy) < 0. This is a contradiction, so α = 0. So ϕ is positive and ϕ(x∗x) 6= 0.

Remark 6.2. To get the isometry property, we could have produced a ϕ such that
ϕ(x∗x) = ‖x∗x‖.

6.2 Topologies on B(H)

If H is a Hilbert space, we have multiple choices for norms on B(H).

Definition 6.1. The operator norm topology is the norm topology given by

‖T‖ = sup
ξ∈(H)1

‖Tξ‖ = sup
ξ,η∈(H)1

| 〈Tξ, η〉 |.

Definition 6.2. The weak operator topology is the topology generated by the semi-
norms T 7→ | 〈Tξ, η〉 | for all ξ, η ∈ H.
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Definition 6.3. The strong operator topology is the topology generated by the semi-
norms T 7→ ‖Tξ‖ for all ξ ∈ H.

The WOT is weaker than the SOT, which is weaker than the NT.

Definition 6.4. A von Neumann algebra is a *-algebraM ⊆ B(H) with 1M = idM ∈M
which is closed in the weak operator topology.

So every von Neumann algebra is a C∗-algebra.

Definition 6.5. Let X be a Banach space, and let Y ⊆ X∗ be a vector subspace. The
σ(X,Y ) topology on X is given by the seminorms x 7→ |ϕ(x)| for ϕ ∈ Y .

Proposition 6.1. Let X be a Banach space, and let Y ⊆ X∗ be a vector subspace.

1. A linear functional ϕ : X → C is σ(X,Y )-continuous if and only if ϕ ∈ Y .

2. A linear functional ϕ : X → C is σ(X,Y )-continuous on (X)1 iff ϕ ∈ Y ⊆ X∗

(closure with respect to the norm topology).

3. The topologies σ(X,Y ) and σ(X,Y ) coincide on (X)1.

4. If Y = Y , a linear functional ϕ is σ(X,Y )-continuous if and only if it is σ(X,Y )-
continuous on (X)1.

Denote by B∼ = span{ω·ξ,η = 〈ξ, η〉 : ξ, η ∈ H} ⊆ B∗, and denote B∗ = B∼ ⊆ B∗.

Remark 6.3. The weak operator topology is the σ(B,B∼) topology on B(H).

Remark 6.4. Let FR ⊆ B(H) be the space of finite rank operators. Then FR → B∼
given by T 7→ ωT , where ωT (x) = trB(H)(xT ) is an isomorphism.

Definition 6.6. The ultraweak toplogy on B(H) is the σ(B,B∗) topology.

Corollary 6.1. Let B = B(H) for a Hilbert space H.

1. B∼ is the space of weak operator continuous functionals on B(H).

2. B∗ is the space of ultraweak continuous functionals functionals on B

3. ϕ : B → C is ultraweak continuous if and only if it is weak operator continuous on
(B)1.

4. The weak and ultraweak topologies coincide on (B)1.

Theorem 6.2. ϕ : B → C is weak operator continuous if and only if it is it is strong
operator continuous.
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7 WO and SO Continuity of Linear Functionals and The
Pre-Dual of B

7.1 Weak operator and strong operator continuity of linear functionals

Lemma 7.1. Let X be a vector space with seminorms p1, . . . , pn. Let ϕ : X → C be a
linear functional such that |ϕ(x)| ≤

∑n
i=1 pi(x) for all x ∈ X. Then there exist linear

functionals ϕ1, . . . , ϕn : X → C such that ϕ =
∑

i ϕi with |ϕi(x)| ≤ pi(x) for all x ∈ X
and for all i.

Proof. Let D = {x̃ = (x, . . . , x) : x ∈ X} ⊆ Xn, which is a vector subspace. On Xn,
take p((xi)

n
i=1) =

∑
i pi(xi). We also have a linear map ϕ̃ : D → C given by ϕ̃(x̃) =

ϕ(x). This map satisfies |̃(x̃)| ≤ p(x̃). By the Hahn-Banach theorem, there exists an
extension ψ ∈ (Xn)∗ of ϕ̃ such that |ψ(x1, . . . , xn)| ≤ p(x1, . . . , xn). Now define ϕk(x) :=
ψ(0, . . . , x, 0, . . . ), where the x is in the k-th position.

Theorem 7.1. Let ϕ : B → C be linear. ϕ is weak operator continuous if and only if it is
it is strong operator continuous.

Proof. We only need to show that if ϕ is strong operator continuous, then it is weak
operator continuous. So assume there exist ξ1, . . . , ξn ∈ X such that |ϕ(x)| ≤

∑n
i=1 ‖xξi‖

for all x ∈ B. By the lemma, we can split ϕ =
∑
ϕk, such that |ϕk(x)| ≤ ‖xξk‖ for all x and

k. By the Riesz representation theorem, there exists an ηk ∈ H such taht ϕk(x) = 〈xξk, ηk〉.
So ϕ(x) =

∑
k 〈xξk, ηk〉. So ϕ is weak operator continuous.

Corollary 7.1. Any closure in B(H) of a convex set is the same with respect to the weak
operator and strong operator topologies.

Proof. If we have a point in the closure wrt one topology but not in the other, we can
separate it with a hyperplane using the geometric Hahn-Banach theorem.

Corollary 7.2. Let M ⊆ B(H) be a vector subspace. Then a linear functional ϕ : M → C
is weak operator continuous if and only if it is strong operator continuous.

7.2 The pre-dual of B

Recall that we had B∼ = span{x 7→
∑

k 〈xξk, ηk〉 : ξkηk ∈ H} and B∗ := B∼. This is the
same as taking finite rank operators in T ∈ B(H) and taking the functionals x 7→ tr(xT ).

Remark 7.1. B∗ is the space of trace class operators. Suppose T ∈ B(H) has finite
rank. We have |T | = (T ∗T )1/2 by functional calculus. Then tr(|T |) is the Schatten-von
Neumann 1-norm of the operator.

Theorem 7.2. B = (B∗)∗ via the duality pairing B × B∗ → C given by 〈x, ϕ〉 = ϕ(x).
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Here is the idea: Since B∗ ⊆ B∗, we can view its elements as linear functionals on B.
But then we can view elements of B as linear functionals on B∗.

Proof. If x ∈ B, denote Φx : B∗ → C by Φx(ϕ) = ϕ(x). Then |Φx(ϕ)| ≤ ‖ϕ‖ · ‖x‖, soo
‖Φx‖ ≤ ‖x‖. So the map B → (B∗)∗ sending x 7→ Φx is a contraction. In fact, ‖Φx‖ = ‖x‖
because ‖x‖ = supξ,η∈(H)1 | 〈xξ, η〉.

To show that this is surjective, take Φ ∈ (B∗)∗. Then consider the map H × H 7→ C
given by (ξ, η) 7→ Φ(ωξ,η), where ωξ,η = 〈·ξ, η〉. So by Riesz-representation, there is an
x ∈ B such that Φ(ωξ,η) = 〈x, ξ, η〉. So Φ = Φx.

Corollary 7.3. (B)1 is weak operator compact.

Proof. This is the topology σ(B,B∗) topology on (B)1. By the Banach-Alaoglu theorem,
this is compact.

Corollary 7.4. Let M ⊆ B be a vector subspace which is weak operator closed. Denote
M∗ = {ϕ|M : ϕ ∈ B∗}. Then (M∗)

∗ = M via the duality pairing 〈x, ϕ〉 = ϕ(x). Thus, any
von Neumann algebra is the dual of some space.

Remark 7.2. Any C∗-algebra with a pre-dual is a von-Neumann algebra.

Here is some notation:

1. If X ⊆ H is a nonempty subset, then we denote [X] to be the norm closure of spanX.
We may also use this same notation to denote the orthogonal projection of that space
(but this will be clear in context).

2. Let S ⊆ B(H) be nonempty. Then we denote S′ = {x ∈ B(H) : xy = yx ∀y ∈ S} to
be the commutant of S in B(H).

Proposition 7.1. S′ is strong operator closed, and it is an algebra. If S = S∗, where
S∗ = {x∗ : x ∈ S}, then S′ is a *-algebra. In this case, S′ is weak operator closed and is
hence a von-Neumann algebra.

Proof. If xi ∈ S′ and xi
so−→ x ∈ B(H), then

xyξ = lim
i
xiyξ = lim

i
yξiξ = y lim

i
xiξ = yxξ,

so x ∈ S′.

Remark 7.3. Physicists view S′ as an algebra of symmetries of states in a system.

We will prove the following theorem next time.

Theorem 7.3 (von Neumann’s bicommutant theorem, 1929). Let M ⊆ B(H) be a *-
algebra with 1M = idH . Then M is a von Neumann algebra if and only if M = (M ′)′.
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Remark 7.4. Some people call this von Neumann’s density theorem because it says that
the weak operator closure of M is (M ′)′.

Theorem 7.4 (Kaplansky, late 50s). Let M,M0 be *-algebras. If the strong operator
closure of M∗0 equals M , then (M0

so
)1 = (M)1.
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8 von Neumann Bicommutant Theorem and Kaplansky’s
Density Theorem

8.1 von Neumann’s bicommutant theorem

If S ⊆ B(H), we denote S′ = {x ∈ B(H) : xy = yx ∀y ∈ S} to be the commutant of S.
Last time, we had the following results.

Proposition 8.1. S′ is always strong-operator closed, S′ is an algebra with unit, and if
S = S∗, S′ is a *-algebra.

In particular, if S = S∗, then S′ is a von Neumann algebra.

Theorem 8.1 (von Neumann’s bicommutant theorem, 1929). Let M ⊆ B(H) be a *-
algebra with 1M = idH . Then M is a von Neumann algebra if and only if M = (M ′)′.

Remark 8.1. Some people call this von Neumann’s density theorem because it says that
the weak operator closure (or equivalently, the strong operator closure) of M is (M ′)′.

Proposition 8.2. If A ⊆ B(H) is an algebra, then for all ξ ∈ H, [Aξ] is invariant to all
a0 ∈ A.

Corollary 8.1. If A = A∗ is a *-algebra, then [Aξ] is invariant to both a0 and a∗0 for all
a0 ∈ A. Thus, [Aξ] is reductive for a0: a0 · [Aξ0] = [Aξ0] · a0. So [Aξ] ∈ A′.

Now we can prove the theorem.

Proof. ( =⇒ ): M ′′ is weak operator closed, so it is a von Neumann algebra.
(⇐= ): We have M ⊆M ′′ and M ′′ is strong operator closed, so M

so ⊆M ′′. We want
to show that M is dense in M ′′: if x′′ ∈M ′′, then for any ξ1, . . . , ξm ∈ H and ε > 0, there
is an x ∈M such that ‖(x− x′′)ξi‖ < ε for all i.

Step 1: Take first the case n = 1. Since x′′ ∈ M ′′, [x′′, [Mξ]] = 0 (where the outer
bracket means commutator); that is, x′′[Mξ](ξ) = [Mξ]x′′(ξ) ∈ Mξ. On the other hand,
the left hand side is x′′(ξ). So x′′ξ ∈ Mξ. So for any ε > 0, there is an x ∈ M such that
‖x′′ξ − xξ‖ < ε.

Step 2: For arbitrary n, take M̃ ⊆ B(H⊕n), where M̃ is the collection of block diagonal
matrices that look like 

x
x

. . .

x



28



for x ∈ M . Then M̃ is SO closed in B(H⊕n), and M̃ ⊇ {(x′i,j)1≤i,j≤n : x′i,j ∈ M ′} If

x = (yi,j)i,j ∈ (M̃)′ and

ei,i =



0
. . .

0
1

0
. . .

0


,

then ei,i ∈ M̃ ′. So M̃ ′ = {(x′i,j)1≤i,j≤n : x′i,j ∈M ′}. Now let

M̃ ′′ =



x′′

x′′

. . .

x′′

 : x′′ ∈M ′′

 ⊆ {(x
′
i,j)1≤i,j≤n : x′i,j ∈M ′}′.

Then M̃ ′′ ⊆ (M̃ ′)′ = M̃ ′′. By the first part applied to

x̃′′ =


x′′

x′′

. . .

x′′

 ∈ M̃ ′′,
we have for (ξ1, . . . , ξn) ∈ Hn that x̃′′ξ ∈ M̃ ξ̃. So for every ε > 0, there is an x = x̃ ∈ M
such that ‖(x̃′′ − x̃)ξ̃‖ < ε. So (

∑
‖(x′′ − x)ξi‖2)1/2 < ε.

8.2 Kaplansky’s density theorem

Theorem 8.2 (Kaplansky, late 50s). Let M ⊆ B(H) be a von Neumann algebra, and let
M0 ⊆M be a SO-dense *-algebra. Then (M0

so
)1 = (M)1. Moreso, (M0,h

so
)1 = (Mh)1 and

(M0,+
so

)1 = (M+)1.

Proof. Step 1: First observe that M0,h
so

= Mh. Indeed, M0,h
wo

= Mh since x 7→ x∗ is

WO-continuous. So if xi → x = x∗, then
xi+x

∗
i

2 → x. So M0,h
so

= M0,h
wo

= Mh.

Step 2: Show that (M0,h
so

)1 = (Mh)1. We can assume M0 = M0
norm

. Let x = x∗ ∈
(M)1, so Spec(x) ⊆ [−1, 1]. Take the bijection f : [−1, 1]→ [−1, 1] sending t 7→ 2t

1+t2
. Note

that given any b = b∗, f(b) makes sense and ‖f(b)‖ ≤ 1. So there is a y ∈ (Mh)1 such that
x = 2y

1+y2
. We have that there exist (by step 1) yi = y∗i

so−→ y in (M0)h.
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We claim that 2yi
1+y2i

so−→ 2y
1+y2

= x. Indeed,(
2yi

1 + y2
i

− 2y

1 + y2

)
ξ =

1

1 + y2
i

(
2yi(1 + y2)− (1 + yi)

22yi
) 1

1 + y2
ξ

=
1

1 + y2
i

((2yi − 2y) + yi(y − yi))
2y

1 + y2
ξ.

The 2yi−2y part disappears because of the strong operator convergence, and the left term
handles the rest.

We will do the non self-adjoint part of the proof next time.
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9 Kaplansky’s Theorem and Polar Decomposition

9.1 Kaplansky’s theorem, general case

Let’s finish the proof of Kaplansky’ theorem.

Theorem 9.1 (Kaplansky, late 50s). Let M ⊆ B(H) be a von Neumann algebra, and let
M0 ⊆M be a SO-dense *-algebra. Then (M0

so
)1 = (M)1. Moreso, (M0,h

so
)1 = (Mh)1 and

(M0,+
so

)1 = (M+)1.

In other words, if x ∈ M , there exist xi ∈ M0 such that ‖xi‖ ≤ ‖x‖ and xi
so−→ x. We

have shown this in the case where x = x∗ ∈ (M1). Let’s extend it to the non-self-adjoint
case.

Proof. If x ∈ (M+)1, then there exist yi ∈ (M0,h)1 such that yi
so−→
√
x. But then y2

i
so−→

(
√
x)2 = x; this is because

(y2
i − y2)ξ = yi(yi − y)ξ + (yi − y)(yξ).

and yi
so−→ y.

To deal with general x ∈ (M)1, consider the *-algebra of matricesM2(M) ⊆M2(B(H)) =
B(H⊕H). This algebra of matrices is SO-closed, so it is a von Neumann algebra. Moreover,
M2(M0) is SO dense in M2(M). By the first part, the operator

Y =

[
0 x
x∗ 0

]
∈ (M2(M))1.

The norm of Y is 1 because Y ∗ = Y , and Y ∗Y is diagonal with norm ‖x‖2. So there
exist Yi ∈ (M2(M0)h)1 such that Yi

so−→ Y . Since ‖Yi‖ ≤ 1, ‖[Yi]1,2‖ ≤ 1. So we get

[Yi]1,2
so−→ [Yi]1,2 = x.

Corollary 9.1. Let M ⊆ B(H) be a *-algebra with unit. The following are equivalent:

1. M is a von Neumann algebra (i.e. is WO-closed)

2. M is ultraweak-closed.

3. (M)1 is ultraweak compact.

Proof. (1) =⇒ (3): If M is a von Neumann algebra, then M = (M∗)
∗, so 3 follows by the

Banach-Alaoglu theorem.
(3) =⇒ (1): This follows from Kaplansky’s theorem.
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9.2 Polar decomposition

Definition 9.1. If x ∈ B(H), the left support `(x) is the orthogonal projection onto
[xH], and the right support r(x) is the orthogonal projection onto (kerx)⊥ = imx∗.

Proposition 9.1. The left and right support satisfy the following:

1. `(x) is the smallest projection e ∈ B(H) such that ex = x.

2. r(x) is the smallest projection f ∈ B(H) such that xf = x.

So if x = x∗, then `(x) = r(x).

Definition 9.2. If x ∈ B(H) is self adjoint, then s(x) = `(x) = r(x) is called the support
of x.

Recall that a partial isometry v is an element such that v∗v and vv∗ are projections.11

Proposition 9.2. If v ∈ B(H) is a partial isometry, then `(v) = vv∗ and r(v) = v = v∗v.

Theorem 9.2 (Polar decomposition). Let x ∈ B(H). There exist a unique a ∈ B(H)+

and partial isometry v ∈ B(H) such that x = va and v∗v = s(a).

Remark 9.1. This is analogous to the fact that if α ∈ C, we can express α = α
|α| |α|.

Proof. Observe that if x = va, then x∗x = av∗va = a2. So a =
√
x∗x.

How should we define v? If ξ ∈ r(x)(H), then xξ = vaξ with ‖xξ‖2 = 〈x∗xξ, ξ〉 =〈
a2ξ, ξ

〉
= ‖aξ‖2. So we define v(aξ) := xξ for aξ ∈ s(a)H and v(η) := 0 if η ⊥ s(a)(H).

So v is a partial isometry on H.
For uniqueness, we saw that we must have a =

√
x∗x. If, in addition, v∗v = s(x), then

vaξ = xξ. So this choice is forced upon us.

11If one of these is a projection, so is the other.

32



10 Sups and Infs of Self-Adjoint Operators

10.1 Sups and infs of self-adjoint operators

For x ∈ B(H), we defined the left support `(x) = [xH] and the right support r(x) as the
projection onto (kerx)⊥. We had that `(x) = r(x∗) and `(x∗) = r(x). So if x = x∗, then
we can define `(x) = r(x) =: s(x), the support of x. We also had the following:

Proposition 10.1. The left and right support satisfy the following:

1. `(x) is the smallest projection e ∈ B(H) such that ex = x.

2. r(x) is the smallest projection f ∈ B(H) such that xf = x.

Definition 10.1. If {ei} is a family of projections in B(H), we denote by
∨
i ei the orthog-

onal projection onto span{im ei}. Denote by
∧
i ei the orthogonal projection onto

⋂
i im ei

Proposition 10.2.
∨
i ei is the smallest projection e in B(H) such taht e ≥ ei for all i.∧

i ei is the largest projection e in B(M) such that e ≤ ei for all i.

Proposition 10.3. If {xi} ⊆ B(H)h is uniformly bounded (supi ‖xi‖ <∞), then there is
a unique x = x∗ ∈ B(H) such that x ≥ xi for all i and such that if y = y∗ ≥ xi for all i,
then y ≤ x. Moreover, if {xi} is an increasing net (i ≤ j =⇒ xi ≤ xj), then xi

so−→ x.

Remark 10.1. This says that there is a least upper bound supi xi of {xi} in B(H)h.
Similarly, there exists some infi xi.

Proof. We can assume 0 ≤ xi ≤ 1; if K = supi ‖xi‖, then 1 ≥ 1
2K (xi + K1) ≥ 0. For

ξ ∈ H, denote F (ξ, ξ) = supi 〈xiξ, ξ〉. Then define F (ξ, η) by polarization:

F (ξ, η) =
1

4

3∑
i=0

ikF (ξ + ikη, ξ + ikη).

Then |F (ξ, η)| ≤ ‖ξ‖‖η‖ means F is bounded. By the Riesz representation theorem, there
is a unique x ∈ B(H) such that ‖x‖ ≤ 1 and x ≥ 0 such that F (ξ, eta) = 〈xξ, η〉 for all
ξ, η ∈ H. So 〈x, ξ, ξ〉 = supi 〈xiξ, ξ〉.

To get xi
so−→ x, we want ‖(x− xi)ξ‖ → 0 for all ξ ∈ H. We have by functional calculus

that

‖(x− xi)ξ‖2 = ‖(x− xi)1/2(x− xi)1/2ξ‖2 ≤ ‖(x− xi)1/2‖2︸ ︷︷ ︸
≤‖x‖

〈(x− xi)ξ, ξ〉︸ ︷︷ ︸
→0

.

So xi
so−→ x.

Proposition 10.4. If e is an orthogonal projection, Spec(e) ⊆ {0, 1}.
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Proof. Since e = e∗, Spec(e) ⊆ R. Since e2 = e, we must have Spec(e) ⊆ {0, 1}.

Proposition 10.5. Let {ei} be a family of projections. Then∨
i

ei = sup
i
ei,

∧
i

ei = inf
i
ei.

Proposition 10.6. Let {ei} be a family of projections. Then∨
i

ei =
∨
J⊆I

J finite

eJ , eJ = s

(∑
i∈J

ei

)
,

and as J increases, eJ ↗
∨
i ei. In particular, if |I| <∞, then

∨
i ei = s(

∑
i∈I ei).

Remark 10.2. This says that (P(B(H)),≤), the projections on H with ≤, is a complete
lattice.

10.2 Consequences in von Neumann algebras

Proposition 10.7. If M is a C∗-algebra with unit, then any x ∈ M is a linear combina-
tions of 4 unitary elements in M . In other words, M = spanU(M).

Proof. We have x = Rex+ i Imx. But if a = a∗ ∈ (M)1, then we can view it as a function
using functional calculus. Then we can split it up into the sum of t 7→ t + i

√
1− t2 and

t 7→ t− i
√

1− t2, which are unitary because their ranges are subsets of the unit circle.

If M = M∗, then [Mξ] ∈ M ′ for all ξ ∈ H. So if M is a von Neumann algebra, then
[M ′ξ] ∈ M ′′ = M . So to check that x ∈ M , it is necessary and sufficient to check that
u′x(u′)∗ = x for all u ∈ U(M ′).

Corollary 10.1. Let M be a von Neumann algebra. Then `(x), r(x) ∈M .

We will prove this next time. Here is a consequence.

Corollary 10.2. Let M be a von Neumann algebra. If x ∈ M and x = va is the polar
decomposition, then v, a ∈M .

Proof. For any u′ ∈ U(M ′), we have u′x(u′)∗ = x. On the other hand, x = u′va(u′)∗ =
u′v(u′)∗u′a(u′)∗. Then v0 = u′v(u′)∗ is a partial isometry and a0 = u′a(u′)∗ ≥ 0. Then
a = (x∗x)1/2 ∈M . So we just need to show that v ∈M . We have that r(v0) = u′r(v)(u′)∗ =
u′r(x)(u′)∗. By uniqueness of the polar decomposition of x, v = v0 ∈M .

Corollary 10.3. Let M be a von Neumann algebra. If {xi} ⊆ M is uniformly bounded
and increasing, then supi xi ∈M .

This is because xi ↑ supi x in the SO-topology.

Corollary 10.4. Let M be a von Neumann algebra. Then P(M), the projections in M
form a complete lattice.

34



11 Multiplication Operators on L2

11.1 Multiplication operators on L2

Let (X,F , µ) be a probability space (we usually assume F to be countably generated).
Then X is measurably isomorphic to [0, 1]⊕ {1, 2, . . . }, where [0, 1] has (scaled) Lebesgue
measure and {1, 2, . . . } has some scaled counting measure on a subset. If X is a compact
metric space, we usually take F to be the σ-algebra of Borel sets. We choose µ to be
regular and assume supp(x) = X. In particular, we may take X to be the spectrum of an
operator x ∈ B(H).

Consider L∞(X,µ) with ‖ · ‖∞. If we define f∗(t) = f(t), then we get a C∗-algebra
structure. If f ∈ L∞, we get a multiplication operator on L2(µ) given by Mf (g) = fg.
Moreover, ‖fg‖2 ≤ ‖f‖∞‖g‖2, so Mf ∈ B(L2) with ‖Mf‖ ≤ ‖f‖∞.

Proposition 11.1. ‖Mf‖=‖f‖∞.

Proof. Let Xm = {t ∈ X : |f(t) ≥ ‖f‖∞ − 1/n}. Then µ(Xm) > 0. Then

‖Mf (1Xm)‖2 =

∫
Xn

|f |2 dµ ≥

((
‖f‖∞ −

1

m

)2

µ(Xm)

)1/2

= (‖f‖∞ −
1

m
)‖1Xm‖2.

So if ξn = ‖1Xm‖−1
2 1Xm , then we get ‖Mfξn‖2 ≥ ‖f‖∞ − 1/m.

Corollary 11.1. f 7→Mf is an isometric *-algebra morphism from L∞ into B(H).

Proof. We have that f 7→Mf is a *-algebra morphism, and Mf = (Mf )∗.

Theorem 11.1. A := {Mf : f ∈ L∞} ⊆ B(L2) is a von Neumann algebra (i.e. it is
WO-closed). Moreover, A′ = A (so A is maximal abelian in B(L2)).

Proof. By von Neumann’s bicommutant theorem, we need only show that A′ = A. Let
T ∈ B(L2), and suppose that TMf = MfT for all f ∈ L∞. Then let ϕ := T (1) ∈ L2.

Define Mϕ : L2 → L1 by Mϕ(ψ) = ϕψ (the image is in L1 by Cauchy-Schwarz). Then
‖Mϕ‖B(L2,L1) ≤ ‖ϕ‖2 by Cauchy-Schwarz. Both T,Mϕ are continuous from L2 → L1, and
they coincide on L∞ ⊆ L2 because if f ∈ L∞,

T (f) = TMf (1) = MfT (1) = Mf (ϕ) = fϕ = Mϕ(f).

Since L∞ is dense in L2, T = Mϕ as operators in B(L2, L1). So Mϕ(L2) ⊆ L2.
Why is ϕ ∈ L∞? Assume that ϕ /∈ `∞. Let Xn = {t ∈ X : |ϕ(t)| ≥ n}, and let

ξn = µ(Xn)−1/2
1Xn . Then ‖Mϕ(ξn)‖2 ≥ n. Letting n→∞ yields a contradiction.
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11.2 Sups of dominating sequences of operators

Lemma 11.1. Let x = x∗ ∈ B(H)h and let fn, gm ≥ 0 be increasing sequences of contin-
uous functions on Spec(x) that are both uniformly bounded. If supn fn(t) ≤ supn gn(t) for
all t ∈ Spec(x), then supn fn(x) ≤ supn gn(x).

Let et := 1(t,∞)(x). We can then build all bounded measurable functions using these,
and this will give us a functional calculus for all Borel measurable functions.
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12 Spectral Scales

12.1 Spectral scales

Last time, we stated the following lemma.

Lemma 12.1. Let x = x∗ ∈ B(H)h and let fn, gn ≥ 0 be increasing sequences of continuous
functions on Spec(x) that are both uniformly bounded. If supn fn(t) ≤ supn gn(t) for all
t ∈ Spec(x), then supn fn(x) ≤ supn gn(x).

Proof. We will prove that for any fixed n and ε > 0, there exists an mn such that fn− ε ≤
gmn ; this will complete the proof because then supm gm(x) ≥ fn(x)− ε for all n and ε > 0.

If t ∈ Spec(x), then fn(t) − ε < fn(t) < supn fn(t) ≤ supm gm(t). So there exists mn

such that gmn(t) ≥ fn(t)− ε. So there is a neighorhoof Vt of t such that fn(s)− ε < gmn(s)
for all s ∈ Vt. By the compactness of Spec(x), there exist Vt1 , . . . , Vtk covering Spec(x)
and corresponding mn1 , . . . ,mnk . If we let mn := max{mnj : 1 ≤ j ≤ k}, then fn(s)− ε <
gnm(s) for all s ∈ Spec(x).

Corollary 12.1. The spectral scales e(−∞,t](x) := sup{f(x) : f ∈ C(Spec(x)), f ≤
1(−∞,t)} are well-defined.

We have that 1(−∞,t](x) =
∧
s>t es(x). If Y ⊆ Spec(x) is Borel, then eY = 1Y (x) exists

and be called spectral projections. These are all contained in the von Neumann algebra
generated by x.

Proposition 12.1. Let e[t,∞) = 1− et. Then

1. e[α,β) = e(−∞,α)e[β,∞) = eα(1− eβ).

2. eY1eY2 = eY1∩Y2.

3. eY1 ∨ eY2 = eY1∪Y2.

4. xet ≤ tet, and x(1− et) ≥ t(1− et).
Corollary 12.2. If t ≤ s, then

t(es − et) ≤ x(es − et) ≤ s(es − et).

Let m = inf Spec(x) and M = sup Spec(x). Given a partition m = t0 < t1 < · · · <
tn = M , we can construct Riemann-Darboux sums

s(∆) =
n∑
i=1

t− i− 1(eti − eti−1), S(∆) =

n∑
i=1

ti(eti − eti−1)

If the mesh size is < ε, then ‖S(∆)− s(∆)‖ < ε. Then we can define the vector valued
Stieltjes integral which satisfies

x =

∫ ∞
−∞

λ deλ.
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Remark 12.1. This integral takes values in B(H). Since Spec(x) ⊆ [m,M ], this is really
an integral over a compact set. The convergence is convergence in norm.

Corollary 12.3. If x ∈ (B(H)+)1, then there exist projections {pn}n in A, the von Neu-
mann algebra generated by x, such that x =

∑
n≥1 2−npn.

This is called the dyadic decomposition of x.

Proof. Define the projections recursively: Start with p1 = e[1/2,1)(x), so ‖x− 1
2p1‖ ≤ 1/2.

Then take p2 = e[1/4,1/2](1 − 1
2p1) to be this projection applied to the previous result.

Continuing like this, we get all the projections.

So the von Neumann algebra is generated by x is generated by these projections, as
well.

12.2 Cyclic and separating vectors

Definition 12.1. Let M ⊆ B(H) be a von Neumann algebra. ξ ∈ H is a cyclic vector
of M if Mξ = H.

Definition 12.2. Let M ⊆ B(H) be a von Neumann algebra. ξ ∈ H is a separating
vector of M if when x ∈M satisfies xξ = 0, x = 0.

Proposition 12.2. Let M = A be an abelian von Neumann algebra. Then ξ is separating
if and only if it is cyclic.
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13 Cyclic and Separating Vectors, and The Extension of The
Gelfand Transform

13.1 Cyclic and separating vectors

Definition 13.1. Let M ⊆ B(H) be a von Neumann algebra. ξ ∈ H is a cyclic vector
of M if Mξ = H.

Definition 13.2. Let M ⊆ B(H) be a von Neumann algebra. ξ ∈ H is a separating
vector of M if when x ∈M satisfies xξ = 0, x = 0.

Proposition 13.1. Let M = A be an abelian von Neumann algebra. If ξ is cyclic, it is
separating.

Proof. If ξ is cyclic and xξ = 0, then A(xξ) = 0. So xAξ = 0. So x = 0.

Definition 13.3. If {pi} are projections in M with pipj = 0, then we define
∑

i pi :=
∨
i pi.

Lemma 13.1. If A ⊆ B(H) is an abelian von Neumann algebra, then A has a separating
vector.

Proof. Let {ξi}i∈I be a maximal family of unit vectors such that [Aξi] is mutually orthog-
onal. Then

∑
i[Aξi] = 1. To see why, suppose not. Then for 1−

∑
i[Aξi] 6= 0, take ξ0 be a

unit vector in the range of 1−
∑

i[Aξi]. Then for any fixed i, 〈xξ0, yξi〉 = 〈ξ0, x
∗yξi〉 = 0.

This implies that {ξi} is countable, so let ξ =
∑

n≥1 2−nξn. We claim that if x ∈ A and
xξ = 0, then x = 0. Indeed, if xξ = 0, then [Aξn]xξ = 0, so 0 = x[Aξn](ξ) = 2−nξn. This
shows that ξn = 0 for all n, so x[Aξn] = 0 for all n. So xH = 0, making x = 0.

Corollary 13.1. Let H be separable, and let A ⊆ B(H) be an abelian von Neumann
algebra with ξ ∈ H separating for A. Let p = pH0 = [Aξ]. Then the map A 7→ B(H0)
given by x 7→ xp is a 1 to 1 *-algebra morphism which is SO-SO12 continuous (with SO-SO
continuous inverse).

Remark 13.1. We can also say this is WO-WO continuous.

13.2 Extension of the Gelfand transform

Theorem 13.1. Let T ∈ B(H) be a normal operator, let AT = {T, T ∗}′′ be the von
Neumann algebra generated by T . Assume AT has a cyclic vector ξ ∈ H with ‖ξ‖ = 1.
Then there exist a positive, regular Borel measure µ on X = Spec(T ) ⊆ C of support
X, a unitary U : H → L2(X,µ), and an isometric *-morphism Φ : AT → B(L2(X,µ))
implemented spactially by U ; i.e. Φ(x) = UxU−1 ∈ B(L2(X,µ)). Moreover, Φ has range
{Mf : f ∈ L∞(X,µ)}, which is maximal abelian in B(L2(X,µ)), and, when restricted to

12This doesn’t mean that it’s only sort of continuous. But I know you had the thought.
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the C∗-algebra generated by T, T ∗, is the Gelfand transform. In particular, Φ(Tn) = Mzn,
Φ((T ∗)n) = Mzn. The measure µ is given by∫

X
f dµ = 〈f(T )ξ, ξ〉 .

Uniqueness: If µ1 is a positive, regular Borel measure on C with supp(µ1) = Spec(T )
and Φ1 : AT → L∞(X,µ1) extends Γ, then µ ∼ µ1 and Φ1 = Φ.

Proof. Read the Douglas textbook for the proof.

Now if T ∈ B(H) is an arbitrary normal operator, what is its Borel/L∞ calculus?
Take a separating ξ ∈ H for AT = {T, T ∗}′′. Then AT 7→ AT p ∈ B([AT ξ]) identifies
(AT , 〈·, ξ, ξ〉)→ (L∞(Spec(T )s, µ), µ).

13.3 Projection geometry

Let P(M) denote the projections in the von Neumann algebra M .

Definition 13.4. If e, f ∈ P(M), then e ∼ f if there exists a partial isometry v ∈M with
`(v) = e and r(v) = f ; i.e. vv∗ = e and v∗v = f .

Theorem 13.2. If x ∈M , then `(x) ∼ r(x).

Proof. This is by the polar decomposition of x.

Theorem 13.3 (Paralellogram rule). If e, f ∈M , then (e ∨ f − f) ∼ (e− e ∧ f).

Proof. Use the fact that e ∨ f − f = `(e(1− f)), and e− e ∧ f = r(e(1− f)).

Theorem 13.4 (Cantor-Bernstein). If e ≺ f and f ≺ e, then e ∼ f .
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14 Geometry of Projections

14.1 Geometry of projections in a von Neumann algebra

Let M ⊆ B(H) be a von Neumann algebra, and let P (M) be the projections in M .

Definition 14.1. Projections e, f ∈ P (M) are equivalent (e ∼ f) if there exists a partial
isometry v ∈ M such that vv∗ = e and v∗v = f (i.e. `(v) = e, r(v) = f). We say that e
is dominated by f (e ≺ f) if there exists f1 ≤ f such that e ∼ f1 (i.e. there is a partial
isometry v ∈M such that vv∗ = e and v∗v ≤ f .

Proposition 14.1. For all x ∈M , `(x) ∼ r(x).

Proof. This follows from the polar decomposition of x: x = v|x|. Then s(|x|) = r(x), and
|x| ∈ s(|x|)Ms(|x|).

Theorem 14.1 (Paralellogram law). If e, f ∈ P (M), then (e ∨ f − f) ∼ (e− e ∧ f).

Proof. The left hand side is `(e(1− f)), and the right hand side is r(e(1− f)).

Definition 14.2. The center of M is Z(M) = M ′ ∩M .

Definition 14.3. Let x ∈ M . The central support of x is the smallest projection z in
Z(M) such that zx = x = xz. We denote this by z(x).

By taking
∧
zix=x zi, this exists.

Proposition 14.2. z(x) = [MxH].

Proof. Call the right hand side the projection p. Since zx = x, z ≥ p: z = uzu∗ where
u is unitary, so z ≥ u`(x)u∗ for all unitary u. So z ≥

∨
u u`(x)u∗ = [MxH] because

span(U(M)) = M .
But px = x, and p ∈ Z(M) because M ′MxH = MxH and MMxH = MxH. By the

definition of z, p ≥ z(x).

Theorem 14.2. Let e, f ∈ P (M). The following are equivalent:

1. eMf 6= 0.

2. there exist a nonzero e1 ≤ e and a nonzero f1 ≤ f with e1 ∼ f1.

3. z(e)z(f) 6= 0.

Theorem 14.3 (Comparison theorem). Let e, f ∈ P (M). There exists a projection in
Z(M) such that ep ≺ fp or e(1− p) � f(1− p).

Proof. Exercise.13

13:(
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Corollary 14.1. If Z(M) = C, then e ≺ f or e � f .

Theorem 14.4 (Schröder-Bernstein type theorem). If e � f and f � e, then e ∼ f .

Proof. Exercise.14

14.2 Vold decomposition

Example 14.1. The left shift on `2(N) is an isometry.

Theorem 14.5 (Vold’s decomposition theorem). If v ∈ M is an isometry (i.e. v∗v = 1),
then v = u⊕v0, where there is a projection p with u∗u = uu∗ = p, v∗0v0 = 1−p, v0v

∗
0 ≤ 1−p.

(So vn0 (v∗0)n is a decreasing sequence of projections decreasing to 0. This decomposition is
unique.

Remark 14.1. If p is as above, vn(v∗)n ↘ p. In particular, if p0 = (1− p)− v0v
∗
0, then all

vnp0(vn)∗ are mutually orthogonal.

14.3 Factors and finite projections

Definition 14.4. M is a factor if Z(M) = C.

Definition 14.5. e ∈ P (M) is abelian if eMe is abelian.

Example 14.2. e ∈ B(H) is abelian if and only if e is a 1-dimensional projection.

Definition 14.6. e ∈ P (M) is a finite projection if whenever f ≤ e and f ∼ e, f = e.

This is like saying that a set E is finite if the only subset of E that it is in bijection
with is E itself.

Remark 14.2. This is equivalent to the following: for any partial isometry v ∈ eMe with
v∗v = e, we have vv∗ = e; i.e. any isometry on eMe is a unitary in eMe.

Definition 14.7. e ∈ P (M) is properly infinite if e has no direct summands in M that
are finite, i.e. if p ∈ P (M) ∩ Z(M) with pe finite, then pe = 0.

Example 14.3. Consider the von Neumann algebra C1 ⊕ B(`2(N)). Then e = 1 is not a
finite projection, but it is not properly infinite. If p is the projection onto the B(`2(N))
part, then p is properly infinite.

Definition 14.8. A von Neumann algebra M is finite if 1 is a finite projection (i.e. any
isometry is necessarily a unitary). M is semifinite if 1M =

∨
i ei with ei finite.

Example 14.4. L∞(X) is finite (and so is any abelian von Neumann algebra).

14:(
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Example 14.5. Mn(C) = B(`2n) is finite.

Definition 14.9. A von Neumann algebra M is type I if 1M =
∨
i ei with ei abelian.

Example 14.6. B(`2(N)) is type I.

Next time, we willl discuss type II and type II von Neumann algebras.
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15 Geometry of Projections and Classification of von Neu-
mann Algebras

15.1 Closed graph operators

Definition 15.1. A closed graph operator is a linear operator T : D(T ) → H, where
D(T ) ⊆ H is a dense subspace, such that the graph of T , GT = {(ξ, T ξ) : ξ ∈ D(T )} ⊆
H ×H, is closed (i.e. whenever ξn → 0 and Tξn → η, then η = 0).

Example 15.1. Let `2(N) have its usual orthonormal basis ξn. Now define T0(
∑
cnξn) =∑

ncnξn, which is defined onD(T0) = H0, the space of finite sums. Now considerGT0 ; there
exists some T such that GT = GT0 . The space of sequences

∑∞
n=1 cnξn with

∑∞
n=1 |ncn|2 <

∞ is D(T ).

15.2 More geometry of projections

Recall some definitions from last time:

Definition 15.2. e ∈ P (M) is abelian if eMe is abelian.

Definition 15.3. e ∈ P (M) is a finite projection if whenever f ≤ e and f ∼ e, f = e.

Definition 15.4. A von Neumann algebra M is finite if 1 is a finite projection (i.e. any
isometry is necessarily a unitary).

Definition 15.5. e ∈ P (M) is properly infinite if e has no direct summands in M that
are finite, i.e. if p ∈ P (M) ∩ Z(M) with pe finite, then pe = 0.

Lemma 15.1. Let e ≤ f ∈ P (M) be abelian. Then

1. e = z(e)f .

2. If z(e) ≤ z(f), then e ≺ f .

Remark 15.1. We always have that if e ≺ f , then z(e) ≤ z(f).

Lemma 15.2. If e ∈ P (M) contains no abelian projection (i.e. if f ≤ e is abelian, f = 0),
then there exist e1, e2 ∈ P (M) such that e1 ∼ e2, and e1 + e2 = e.

Proof. Take maximal (with respect to inclusion) mutually orthonormal sets {ei}I , {fi}I
under e. We claim that

∑
i∈I ei +

∑
i∈I fi = e; if we call this p and e − p 6= 0, then

(e − p)M(e − p) is not abelian. Then there exists an e′0 ∼ f ′0 6= 0 that we can add to the
orthonormal sets, contradicting maximality.

Lemma 15.3. A projection e ∈ P (M) is properly infinite if and only if e =
∑∞

n=1 en with
en ∼ e.
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Proof. Use Vold’s decomposition. Start by building a family {fn} of mutually orthogonal,
mutually equivalent operators. If, say, e =

∑
e0
n with e0

n ∼ e0
m, then split N =

⋃∞
m=1Nm

with |Nm| =∞. Then define em =
∑

k∈Nk e
0
k. This is equivalent to

∑
m∈N e

0
n = e.

Definition 15.6. A projection e ∈ P (M). is of countable type if when {ei}i∈I are
mutually orthogonal and ≤ e, then |I| is countable.

Example 15.2. B(`2(N)) only has projections of countable type, but B(`2(R)) has pro-
jections not of countable type.

Lemma 15.4. Let e, f ∈ P (M), let e be of countable type, and let f be properly infinite.
If z(e) ≤ z(f), then e ≺ f .

Proof. Take {ei}i∈I mutually orthogonal, ≤ e, and such that ei ≺ f for all i; take a
maximal such family with respect to inclusion. We claim that

∑
i ei = e. Indeed, if

p := e −
∑

i ei 6= 0, then if pMf 6= 0, we contradict maximality: taking x such that
pxf 6= 0, we get that `(pxf) ∼ r(pxf). If pMf = 0, then z(p) ≤ z(f) = 0. So I is
countable; that is, e =

∑
n en with en ≺ f for all n. But then by induction on n, one

builds projections fn ≤ f such that fn are mutually orthogonal and en ∼ fn. Now use the
previous lemma.

15.3 Classification of von Neumann algebras

Definition 15.7. A von Neumann algebra M is semifinite if 1M =
∨
i ei with ei finite.

Example 15.3. B(`2(N)) is semifinite.

Definition 15.8. A von Neumann algebra M is type I if 1M =
∨
i ei with ei abelian.

Example 15.4. B(`2(I)) is of type I for any I.

Definition 15.9. A von Neumann algebra M is type II if it is semifinite and has no
abelian projections.

So far in this course, we have no examples of type II von Neumann algebras.

Definition 15.10. A von Neumann algebra M is type II has no finite projections.

We have no examples yet of this, either.

Definition 15.11. A von Neumann algebra M is type I finite if it is of type I and finite.
M is of type I infinite if it is of type I but has no central finite projection.

Example 15.5. B(`2(N)) is of type 1 finite. Type 1 infinite algebras looks like
⊕

i B(`2(Ji))⊗
L∞(Xi), where |Ji| =∞.

We can state similar definitions for type II algebras. Here is the key lemma:
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Lemma 15.5. Let {ei} ⊆ P (M) be mutually orhogonal with mutually orthogonal central
supports z(ei).

1. If all ei are abelian, then
∑

i ei is abelian.

2. If all ei are finite, then
∑

i ei is finite.

Theorem 15.1. Let M be a von Neumann algebras. There exist p1, p2, p3, p4, p5 ∈ P (M)∩
Z(M) with

∑5
i=1 pi = 1 such that Mp1 is of type I finite, Mp2 is type I infinite, Mp3 is

type II1, Mp4 is type II infinite, and Mp5 is type III. So if M is a factor then it is either
isomorphic to Mn(C) for some n, B(`2(I)), a type I, and type II, or a type III.
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16 Examples of Factors

16.1 Type I factors

Last time, we discussed the classification of von Neumann algebras by type. The proof is
an exercise; it consists of taking maximal orthogonal projections of each type, one type at
a time, and looking at the rest of the space.15

Proposition 16.1. If {xi}i ⊆ (M)1 with mutually orthogonal central supports, then
∑

i xi
is a SO-convergent sum. In fact, if {`(xi)}i are mutually orthogonal, {r(xi)}i are mutually
orthogonal, then

∑
i xi is SO-convergent.

We have these 5 types of von Neumann algebras, but we are really interested in factors.

Definition 16.1. A factor is a von Neumann algebra M with Z(M) = C.

Example 16.1. Type I finite factors are algebras with M ∼= Mn×n(C) = B(`2n).

Example 16.2. Type I infinite factors have M ∼= B(`2(I)) for some infinite I.

Lemma 16.1. If M is a type I factor and e ∈M is abelian, then eMe ∼= Ce.

Proof. Consider e and 1−e. We must have e � 1−e or e ≺ 1−e, We can’t have the former,
so e ≺ 1− e. Now repeat this with e2 ≤ 1− e. We can then find a maximal projection like
this.

16.2 Group von Neumann algebras

Let Γ be a discrete group (not necessarily countable), and let λ : Γ→ B(`2(Γ)) be the left
regular representation: λ(g)(ξh) = ξgh. We can also take the right regular representation
ρ : Γ → B(`2(Γ)) given by ρ(g)ξh = ξhg−1 . We have that spanλ(Γ) is a *-algebra, so its
weak closure is a von Neumann algebra.

Definition 16.2. We call L(Γ) := spanλ(Γ)
wk

= λ(Γ)′′ the group von Neumann alge-
bra of Γ. Similarly, we have R(Γ) = ρ(Γ)′′. We have [λ(Γ), ρ(Γ)] = 0, so L(Γ), R(Γ)] = 0.

Define τ : L(Γ)→ C by τ(x) = 〈xξe, ξe〉. Notice that

τ(λ(g)λ(h)) = 〈ξgh, ξe〉 = δgh,e = δhg,e = τ(λ(h)λ(g)).

So τ(xy) = τ(yx) for all x, y ∈ L(Γ). Also, τ is a state, and it satisfies the traciality
property τ(1) = 1. τ is faithful (τ(x∗x) = 0 =⇒ x = 0), since ξe is separating for L(Γ).

Proposition 16.2. If a von Neumann algebra M has a faithful trace, then M is finite.

15Professor Popa said this would be an exercise and then proceeded to write out the proof, which follows
this skeleton. I got too lazy to copy down the definition of each individual projection.
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Proof. If u∗u = 1, then τ(1− uu∗) = 1− τ(uu∗) = 1− τ(u∗u) = 0. So uu∗ = 1.

Corollary 16.1. L(Γ) is finite.

When is L(Γ) a factor?

Theorem 16.1. L(Γ) is a factor if and only if Γ is infinite conjugacy class (i.e. for any
g 6= e, {hgh−1 : h ∈ Γ} is infinite).

Proof. ( =⇒ ): Assume there exists some g 6= e such that {hgh−1 : h ∈ Γ} is finite. This is
{g1, . . . , gn} 63 e. Let z =

∑n
i=1 λ(gi). Then λ(h)zλ(h−1) = z, and z(ξe) =

∑n
i=1 ξgi ⊥ ξe.

But since ξe is separating, z ∈ Z(M) and is not a scalar.
( ⇐= ): If we have z with z(ξe) =

∑
cgξg ∈ `2 with z /∈ C1, then there exists some

g0 6= e with cg0 6= 0. If uhzu
∗
h = z, then cg0 = chg0h−1 for all h.
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17 Group von Neumann Algebras for ICC Groups

17.1 ICC group von Neumann algebras

Last time, we introduced  L(Γ), the group von Neumann algebra of Γ. This is the weak
operator closure of spanλ(Γ), where λ is the left regular representation. We saw that
L(Γ) and R(Γ) has the faithful, SO-continuous (and hence WO-continuous) trace state
τ(x) := 〈xξe, ξe〉. This implied that L(Γ) is a finite von Neumann algebra.

Theorem 17.1. L(Γ) is a factor if and only if Γ is infinite conjugacy class (i.e. for any
g 6= e, {hgh−1 : h ∈ Γ} is infinite).

Proof. ( =⇒ ): We did this last time.
( ⇐= ): If Γ is ICC but z ∈ Z(Γ) \ C1, then z(ξe) =

∑
cgξg ∈ `2(Γ) with cg0 6= 0 for

some g0 6= e. Then for any h, g ∈ Γ,

〈λ(g)zλ(g)∗(ξe), ξh〉 = 〈zξe, ξh〉 = ch.

On the other hand, λ(g)∗(ξe) = ρ(g)(ξe), which commutes with z and λ(g), so

〈λ(g)zλ(g)∗(ξe), ξh〉 = 〈ρ(g)λ(g)zξe, ξh〉 =
〈
zξe, λg−1ξhg

〉
=

〈∑
g

cgξg, ξg−1hg

〉
= cg−1hg.

Take h = g0. Then cg0 = cgg0g−1 for all g, which gives infinitely many equal nonzero
coefficients.

Corollary 17.1. If Γ is ICC, L(Γ) is a II1 factor.

Example 17.1. Let S∞ be the group of finite permutations of N. Then S∞ is ICC. It is
also locally finite: for any finite F ⊆ S∞, there is a finite subgroup of S∞ containing F .

Example 17.2. Let Fn be the free group on n generators. This is ICC.

Definition 17.1. Given two groups H0,Γ0, Γ0 � HΓ0 by left multiplication on the co-
ordinates: g0(hg)g∈Γ0 = (hg−1

0 g)g∈Γ0 . The wreath product is the semidirect product

HΓ0 o Γ0.

Example 17.3. When H = Z/2Z and Γ0, the wreath product is called the lamp lighter
group. You can think of this as an infinite row of lamps, each lit or unlit. This group is
ICC.

Example 17.4. More generally, if H0,Γ0 6= {1} and Γ is infinite, the wreath product is
ICC.
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17.2 Distinguishing groups by their von Neumann algebras

More detailed description of L(Γ).
Different groups can give rise to different group von Neumann algebras.

Theorem 17.2 (M-vN, 1943). L(S∞) 6= L(F2).

However, there is some collapsing that goes on.

Theorem 17.3. All ICC locally finite Γ give the same L(Γ).

Here is an open question:
Are L(Fn) isomorphic or not for different n?

17.3 Multiplication operators on `2(Γ)

Proposition 17.1. Any ξ ∈ `2(Γ) defines operators Lξ, Rξ : `2(Γ)→ `∞(Γ) by

Lξ(η) = ξη =
∑
g,h

cgbhξgh, where ξ =
∑
g

cgξg, η =
∑
h

bhξh.

Moreover, ‖Lξ‖B(`2,`∞) ≤ ‖ξ‖`2.

Proof. This follows by Cauchy-Schwarz:

sup
g∈Γ
|ξη(g)| = sup

g∈Γ

∣∣∣∣∣∑
h∈Γ

chbh−1g

∣∣∣∣∣ ≤ ‖ξ‖`2‖η‖`2 .

Proposition 17.2. D(Lξ) = L−1
ξ (`2) ⊆ `2 is a vector subspace, closed in L2. Moreoverl

Lξ on D(Lξ) is a densely defined, closed operator on `2(Γ).

Proof. We need to show that Lξ has closed graph. That is, we need to show that if ηi → 0
and Lξ(ηi)→ η in `2, then η = 0.

We will do this next time.
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18 Recap Episode

18.1 New lore: examples of von Neumann algebras

From 1936 to 1943, Fred Murray and von Neumann published 4 papers titled “On Rings
of Operators” I-IV. They treated the question: Are there other von Neumann factors M
than B(`2(I))?

Why look at factors? Recall that since Z(M) is abelian, Z(M) ∼= L∞(X) as abelian
algebras for some X. If Z(M) 6= C, and |X| is finite, then M =

⊕n
i=1Mi, where the Mi

are factors.

Proposition 18.1. If M is a finite dimensional C∗-algebra, then M =
⊕k

i=1Mni×ni(C).

In general, the idea is we should have some kind of decomposition M ∼=
∫
Mx dµ(x).

Theorem 18.1 (Murray-von sNeumann, 1936). If M is a factor, then either

1. It is type In (so M ∼= Mn×n(C)).

2. It is type I∞ (so M ∼= B(`2(N))).

3. It is II1 but not type I finite (so it is infinite-dimensional).

4. It is type II∞ (so it is semifinite)

5. It is type III (so it has no finite projections).

This coincided with the beginnings of ergodic theory:

Theorem 18.2 (von Neumann ergodic theorem, 1932). Let Γ be a group, and let Γ � X
be a measure-preserving ergodic action . Then∥∥∥∥∥ 1

N

N−1∑
n=0

Tnf −
∫
f dµ · 1

∥∥∥∥∥
2

N→∞−−−−→ 0.

Many examples of II1 factors come from these considerations of ergodic theory.

18.2 Group von Neumann algebras

Last time, we talked about group von Neumann algebras.16

Let Γ be a group, and let L(Γ) := spanλ(Γ)
wk

= λ(Γ)′′ ⊆ B(`2(Γ)) be the group von
Neumann algebra. We saw that L(Γ) has a trace, which implies that L(Γ) is finite. If Γ is
infinite, then L(Γ) is infinite dimensional. So to get II1 factors, we only need a bit more.
We continued this consideration by showing the following:

16I don’t know why this lecture is recap. But now have enough budget for the rest of the season!
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Theorem 18.3. L(Γ) is a II1 factor if and only if Γ is ICC.

Example 18.1. S∞, the finite permutations of N is ICC.

Example 18.2. Fn, the free group on n generators (with n ≥ 2), is ICC.

Our proof for this theorem used intuition from Fourier analysis, which we can view as
the study of L(Z). For ξ ∈ `2(Γ), we considered Lξ : `2(Γ) → `2(Γ) by Lξ(η) = ξ · η and
saw that ‖Lξ‖B(`2,`∞) ≤ ‖ξ‖2. So (Lξ, D(Lξ)) is a closed graph operator densely defined
on `2(Γ). So if z ∈ Z, then z(ξe) =

∑
cgξg. If uhzuh−1 = z for all h, so cg = chgh−1 for all

g, h. So z is a multiple of the identity.
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19 Convolvers in `2(Γ)

19.1 The group von Neumann algebra of Z

Let’s give a more concrete description of the elements of L(Γ).

Example 19.1. If Γ = Z, then L(Γ) ∼= L∞(T) via the Fourier transform. More precisely,
L∞(T) ∼= {

∑
cnz

n ∈ `2(Z) : f ∗ g ∈ `2(Z) ∀g ∈ `2(Z)} via the map L∞(T) → L(Z) given
by f 7→

∑
cnz

n, where cn = 1
2π

∫
fe−int dµ.

It turns out the general picture looks similar to this case.

19.2 Convolver elements in `2(Γ)

For ξ ∈ `2(Γ), we get Lξ : `2 → `∞, where Lξ(η) = ξ · η. Then ‖Lξ‖B(`2,`∞) ≤ ‖ξ‖`2 . We

also defined (Lξ, D(Lξ)) as a closed graph operator on `2, where D(Lξ) = L−1
ξ (`2) = {η ∈

`2 : ξ · η ∈ `2}. This domain contains CΓ, the finitely supported series, and the operator
has closed graph.

Lemma 19.1. L∗ξ = Lξ∗, where ξ∗(g) = ξ(g−1).

Proof. We can show this for monomials, and by linearity, we can show it for all η ∈ CΓ.

Definition 19.1. An element ξ ∈ `2(Γ) is called a (left) convolver if Lξ(`
2) ⊆ `2 (i.e.

D(Lξ) = `2(Γ).

Corollary 19.1. ξ is a left convolver if and only if ξ∗ is a left convolver.

Proposition 19.1. If ξ is a convolver, then Lξ : `2 → `2 is bounded.

Proof. This follows from the closed graph theorem.

Lemma 19.2. If ξ, η, ζ ∈ `2(Γ) and ξ · η, η · η ∈ `2, then (ξ · η) · ζ = ξ · (η · ζ).

Corollary 19.2. If ξ, η are convolvers, then ξη is a convolver, and LξLη = Lξ·η.

Corollary 19.3. ξ is a left convolver if and only if ξ∗ is a right convolver.

Proof. (ξ · η)∗ = η∗ · ξ∗.

Theorem 19.1. Let LC(Γ) := {Lξ : ξ is a convolver}, RC(Γ) := {Rξ : ξ is a convolver}.
Then LC(Γ) and RC(Γ) are von Neumann algebras. Moreover, LC(Γ) = L(Γ) = R(Γ)′,
and RC(Γ) = R(Γ) = L(Γ)′.

Remark 19.1. This theorem tends to have limited utility, but it provides great intuition
about what L(Γ) and R(Γ) looks like.
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Proof. LC(Γ) is SO closed: Let {xi} be left convolvers such that Lξi
so−→ T ∈ B(`2). Let

|xi = T (ξe. Then ‖ξi − ξ‖`2 → 0 because ξi = Lξi(ξe) → T (ξe) = ξ. But also Lξi → Lξ in
B(`2, `∞) because ‖Lξi−ξ‖B(`2,`∞) ≤ ‖ξi − ξ‖`2 . This implies that Lξ in B(`2, `∞). So ξ is
a convolver.

We now have that LC(Γ) is a SO-closed *-algebra in B(`2(Γ)). So it is a von Neumann
algebra. We also have LC(Γ) ⊇ CΓ, the finitely supported convelvers. So LC(Γ) ⊇ L(Γ);
similarly, RC(Γ) ⊇ R(Γ). Also, we have LC(Γ) commutes with RC(Γ): (ξ ·η) ·ζ = ξ · (η ·ζ)
gives us Rη(Lξ(η)) = Lξ(Rξ(η)).

Thus, L(Γ) ⊆ LC(Γ) ⊆ RC(Γ)′ and R(Γ) ⊆ RC(Γ) ⊆ LC(Γ)′. This implies that
L(Γ)′ ⊇ LC(Γ)′ ⊇ RC(Γ) and R(Γ)′ ⊇ RC(Γ)′ ⊇ LC(Γ). We claim that R(Γ)′ ⊆ LC(Γ);
this will finish the proof.

Let T ∈ R(Γ)′ and let ξ = T (ξe). Then

T (ξg) = T (Rxig(ξe) = Rξg(T (ξe)) = Rξg(ξ) = Lξ(ξg).

By linearity, T = Lξ on CΓ. These coincide on a dense subset of `2(Γ), so T = Lξ.

Now we will switch our notation. We will denote L(Γ) = {
∑
cgng : square summable}

endowed with the formal product of series. This is to make the connection with Fourier
series more apparent. What does the trace state look like with this notation?

τ
(∑

cgug

)
= ce.

Notice that
〈x, y〉 = τ(y∗x) = 〈x, y〉`2(Γ) .

If we let M = L(Γ) with this inner product, then `2(Γ) = M
‖·‖τ

by the GNS construction.
Next time, we will prove the following theorem in two different ways.

Theorem 19.2. L(Fn) 6∼= L(S∞) for n ≥ 2.
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20 Distinguishing Group von Neumann Algebras

20.1 L(F2) and L(S∞) are nonisomorphic

We showed that if Γ is an ICC group, then L(Γ) is a II1 factor. We have many examples
of ICC groups.

Example 20.1. S∞, the group of finite permutations of N is ICC.

Example 20.2. Fn, the free group on n ≥ 2 elements, is ICC.

Example 20.3. If H 6= 1 and Γ0 is an infinite group, the wreath product of H and Γ0 is
ICC.

It is not clear that different groups gives different II1 factors. After all, there is only 1
kind of type I∞ factor, B(`2(N)).

Recall that if a factor M has a trace state, then M is a finite factor. Later, we will
show that this is an iff.

Definition 20.1. A II1 factor M (with a trace state τ) has property Gamma if for
all x1, . . . , xn ∈ M and ε > 0, there exists some u ∈ U(M) such that τ(u) = 0 and
‖uxiu∗ − xi‖τ < ε for all i.

Here, the norm is ‖x‖τ = τ(x∗x)1/2. This comes from an inner product, so we may call
this ‖x‖2.

Proposition 20.1. If Γ Is locally finite and ICC, then L(Γ) has property Gamma.

Proof. L(Γ) = {
∑
cgug : cg ∈ C, `2 summable convolvers}. Then CΓ is a *-subalgebra. If

x0
1, . . . , x

0
n ∈ CΓ, then take a finite subgroup containing them. Now we can pick a unitary

convolver outside of this finite subgroup.

Proposition 20.2. L(F2) does not have property Gamma.

To prove this, we will prove a lemma.

Lemma 20.1. Let Γ be an ICC group. Assume exists a set S ⊆ Γ and g1, g2, g3 ∈ Γ such
that

1. S ∪ g1Sg
−1
1 ∪ {e} = Γ,

2. S, g2Sg
−1
2 , g3Sg

−1
3 are disjoint.

Then L(Γ) does not have property Γ.
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Proof. Assume L(Γ) has property Gamma. So for any ε > 0, there is a u ∈ U(L(Γ)) with
τ(u) = 0, u =

∑
cgug, ce = 0, and ‖uugiu∗ − ugi‖2 < ε for i = 1, 2, 3. This says that∑

g∈Γ |cgigg−1
i
− cg|2 < ε2 for i = 1, 2, 3. For any F ⊆ Γ, denote ν(F ) =

∑
g∈G |cg|2 (so

ν(Γ) = 1). Then, by the triangle inequality in ‖ · ‖`2(S),∣∣∣∣∣∣∣
∑
g∈S
|cg|2

1/2

−

∑
g∈S
|cgigg−1

i
|2
1/2

∣∣∣∣∣∣∣ ≤
∑
g∈S
|cg − cgigg−1

i
|2
1/2

< ε.

That is, |ν(S)1/2 − ν(giSg
−1
i )1/2| < ε. So

|ν(S)− ν(giSg
−1
i )| ≤ 2ε.

But by property (1),

ν(Γ) ≤ ν(S) + ν(g1Sg
−1
1 ) +����ν({e})

≤ ν(S) + ν(S) + 2ε

= 2ν(S) + 2ε

By property (2), we have

1 ≥ ν(S) + ν(g2Sg
−1
2 ) + ν(g3Sg

−1
3 ) ≥ 3ν(S)− 4ε.

This is a contradiction.

Now we can prove the proposition.

Proof. Let Γ = F2 with S, the set of words that start with an for n 6= 0. Then take g1 = a,
g2 = b, and g3 = b−1. These satisfy properties (1) and (2), so by the lemma, F2 does not
have property Gamma.

Remark 20.1. This kind of partition of a group is generally called a paradoxical par-
tition. This is a similar kind of thing as what happens in the Banach-Tarski paradox. In
that case, SO(3) ⊇ F2, and we use this paradoxical partition in that proof.

Corollary 20.1. L(F2) 6= L(S∞).

20.2 Loss of information from forming L(Γ) from Γ

However, this proof is very ad-hoc. It is difficult to tell apart the structure of L(Γ) for
different groups Γ. The functor Γ 7→ CΓ loses some information. But then Γ 7→ CΓ = L(Γ)
loses a lot of information!

Proposition 20.3. C[Z2 × Z2] and CZ4 are both isomorphic to C4.
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This is because of the torsion. In fact, we have the following fact:

Proposition 20.4. Let Γ be abelian and countably infinite. Then there is a *-algebra
isomorphism (L(Γ), τ) ∼= (L∞([0, 1]),

∫
· dm)

This loss of information happens when going from CΓ 7→ L(Γ).

Proposition 20.5. CZn are nonisomorphic for different n.

Proof. The invertible elements in CZn are Zn(C \ {0}).

Here is a conjecture:

Theorem 20.1 (Kaplansky). If Γ is torsion free, then Inv = Γ · (C \ {0}).

This is true if Γ is an orderable group. In fact, Fn is orderable, and many amenable
groups are orderable.

Definition 20.2. If Γ is a group, its group C∗-algebra is C∗r (Γ) := C(Γ)
norm

= spanλ(Γ)
norm

.

C∗(Γ) has lots and lots of unitary elements.

Proposition 20.6. Suppose Γ is abelian and torsion-free. If U0 is the connected component
of 1, U(C∗r )/U0

∼= Γ.

So this algebra does remember the group.

20.3 Amenable groups

The real property we care about here is amenability. Here is a definition due to von
Neumann in the 30s:

Definition 20.3. A group Γ is amenable if it has an invariant mean, i.e. a state ϕ on
`∞(Γ) such that ϕ(g−1f) = ϕ(f) for all f ∈ `∞ and g ∈ Γ (Γ � `∞(Γ) by left translation
on coordinates).

Example 20.4. Zn is amenable for any n.

Example 20.5. S∞ is amenable.

Definition 20.4. Γ has Følner’s property if for any nonempty, finite F ⊆ Γ and ε > 0,
there exists a finite K ⊆ Γ such that

|FK4K|
|K|

< ε.

This is same as saying that

|gK4K|
|K|

< ε ∀g ∈ F.
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Theorem 20.2. The Følner property implies ammenability.

Proof. If Γ has F and is countable, then there exists a sequence Kn ⊆ Γ with

|giKn4Kn|
|Kn|

n→∞−−−→ 0.

Choose a non-principal ultrafilter ω on N, and define ϕ(f) = limn→ω
1
|Kn|

∑
g∈Kn f(g).

This is called a Banach limit. So f 7→ ϕ(f) is linear from `∞(Γ) → C, ϕ(1) = 1, and
ϕ(g−1

i f) = ϕ(f) for all i.

Remark 20.2. We only need to show that ϕ(g−1
i f) = ϕ(f) for the generators of the group.

Example 20.6. Z is amenable because the sets Kn = [−n, n] gives it the Følner property.

Example 20.7. Locally finite groups are amenable because they satisfy the Følner prop-
erty.

Proposition 20.7. If a collection of groups Hi is amenable, then
⊕

iHi is amenable.

Example 20.8. Z o Zn and Z/2Z o Zn are ICC and amenable.

Theorem 20.3 (Murray-von Neumann, 1943). All locally finite ICC groups give the same
II1 factor. In fact, all AFD factors are isomorphic to L(S∞).

Definition 20.5. A II1 factor M with a trace τ is called approximately finite dimen-
sional (AFD) if given any x1, . . . , xn and ε > 0, there exists a finite dimensional von
Neumann algebra B ⊆M and y1, . . . , yn ∈ B such that ‖xi − yi‖ < ε for all i

Proposition 20.8. If Γ is locally finite, then L(Γ) is AFD.

We also have the following remarkable theorem:

Definition 20.6. A II1 factor is amenable if it has an invariant mean (or a hypertrace).

Theorem 20.4 (Connes, 1976). All II1 factors M that are amenable are isomorphic to
L(S∞).

Proposition 20.9. L(Γ) is amenable if and only if Γ is amenable.

Proposition 20.10. F2 is not amenable.

This gives another proof that S∞ and F2 have different group von Neumann algebras.

Corollary 20.2. L(F2) 6∼= L(S∞).
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21 Amenable Groups and Algebras

21.1 Equivalence of amenability for groups and algebras

Definition 21.1. A II1 factor M (with a trace state τ) has property Gamma if for
all x1, . . . , xn ∈ M and ε > 0, there exists some u ∈ U(M) such that τ(u) = 0 and
‖uxiu∗ − xi‖τ < ε for all i.

Here ‖x‖τ = τ(x∗x)1/2. Last time, we showed the folowing:

Theorem 21.1. 1. L(S∞) has property Gamma.

2. For n ≥ 2, L(F2) does not.

Corollary 21.1. L(S∞) 6∼= L(Fn).

Definition 21.2. Γ is amenable if it has an invariant mean (i.e. a state ϕ ∈ S(`∞(Γ))
such that ϕ(gf) = ϕ(f) for all f in`∞ and g ∈ Γ.

Definition 21.3. Γ satisfies Følner’s condition if for all nonempty, finite F ⊆ Γ, for every
ε > 0, ther eis a finite K ⊆ Γ such that |FK4K||K| < ε.

Theorem 21.2. Γ satisfies Følner’s condition if and only if it has an invariant mean.

We only did the ( =⇒ ) direction, but we will do the other direction later.

Definition 21.4. A II1 factor (M, τ) is amenable if there exists a state ϕ ∈ S(B(L2(M, τ)))

satisfying ϕ(xT ) = ϕ(Tx) for all x ∈M and T ∈ B(L2(M)) (here, L2(M) := M
‖·‖τ

). This
is equivalent to ϕ(uTu∗) = ϕ(T ) for all u ∈ U(M) and T ∈ B(L2(M)). Such a ϕ is called
a hypertrace, as ϕ|M = τ .

In the case where M = L(Γ), this is ϕ ∈ S(B(`2(Γ))).

Theorem 21.3. Let Γ be an ICC group. M = L(Γ) is amenable if and only if Γ is
amenable.

Proof. (⇐= ): Take the trace τ on M and extend it to a state on B(L2(M)) = B(`2(Γ)):
take τ̃(T ) = 〈Tξe, ξe〉 for all T ∈ B(`2(Γ)). Let ψ be an invariant mean on Γ. Define

ϕ(T ) =

∫
Γ
τ̃(ugTu

∗
g) dψ.

By this integration, we mean ψ((τ̃(ugTu
∗
g))g). Then ϕ(T ) = ϕ(uhTu

∗
h for all h ∈ Γ, ϕ is

linear, and ϕ(1) = 1. So ϕ is a state on B(L2). This says that ϕ(x0T ) = ϕ(Tx0) for all
T ∈ B for all x0 ∈ CΓ.
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We want to extend this property to all B(L2). Notice also that ϕ|M = τ . If x ∈ (LΓ)1 =
(M)1 is arbitrary, then let xn ∈ (CΓ)1 such that ‖x − xn‖2 → 0 (by Kaplansky’s density
theorem). So

ϕ(xT ) = ϕ((x− xn)T ) + ϕ(xnT )

= ϕ((x− xn)T ) + ϕ(Txn)

= ϕ((x− xn)T ) + ϕ(Tx) + ϕ(T (xn − x))

By Cauchy-Schwarz, we have

|ϕ((xn − x)T )| ≤ ϕ((xn − x)(xn − x)∗)1/2ϕ(T ∗T )1/2

= τ((xn − x)(xn − x)∗)1/2ϕ(T ∗T )1/2

= ‖x− xn‖2ϕ(T ∗T )1/2

n→∞−−−→ 0.

We get a similar bound for ϕ(T (xn − x)).
( =⇒ ): If L(Γ) is amenable and ϕ ∈ S(B(`2(Γ))) is a hypertrace, then there is

an embedding `∞(Γ) → B(`2(Γ)) by f 7→ Mf on `2(Γ). Note that ug := λ(g) satisfies
ugMfu

∗
g = Mgf . So ϕ(Mgf ) = ϕ(ugMfu

∗
g) = ϕ(Mf ). In other words, if we define f 7→

Mf 7→ ϕ(Mf ), we get an invariant mean on Γ.

Remark 21.1. This is not the proof Murray and von Neumann gave to show that L(S∞)
and L(Fn) are non-isomorphic. And von Neumann was the one who formulated the defi-
nition of amenable groups!

21.2 Amenability and nonisomorphism of S∞, F2, and S∞ × F2

Proposition 21.1. F2 is not amenable.

Proof. Assume ϕ is an invariant mean on `∞(F2) (where F2 is the words in letters a and b).
Take A ⊆ Γ to be all words in a and b that start by an with n 6= 0. Then Γ = S ∪aS ∪{e}.
This gives 1 = ϕ(1Γ) ≤ 2ϕ(1S) On the other hand, S, bS, b−1S are disjoint. This gives
that 3ϕ(1S) ≤ ϕ(1Γ) = 1. This is a contradiction.

Proposition 21.2. S∞ is amenable.

Proof. It satisfies the Følner property.

Corollary 21.2. L(Fn) 6∼= L(S∞).

Proof. The former is not amenable, while the latter is amenable.

Proposition 21.3. If Γ0 ⊆ Γ and Γ is amenable, then Γ0 is amenable.
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Proof. We have an embedding `∞(Γ0) → `∞(Γ) as follows: take representatives gn of the
cosets in Γ/Γ0. Then if f ∈ `∞(Γ0), we get f̃ ∈ `∞(Γ) given by f̃(hgn) = f(h) for all n.
This is like reproducing `∞(Γ0) in `∞(Γ) |Γ/Γ0|-many times.

If ϕ ∈ S(`∞(Γ)) is an invariant mean, then ϕ|`∞(Γ0) is an invariant for mean for Γ0.

Corollary 21.3. F2 × S∞ is not amenable. Moreover, if Γ ⊇ F2, then Γ is not amenable.

Corollary 21.4. L(S∞), L(F2), and L(S∞ × F2) are nonisomorphic.

Proof. L(S∞) is amenable, and the other two are not. L(F2) does not have property
Gamma, but L(S∞ × F2) does have property Gamma.
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22 The Hyperfinite II1 Factor

22.1 Construction

Here is another example of a II1 factor.
Consider the algebra R0 =

⊗∞
n=1(M2(C), tr)n (this is just algebraic). This is

M2 M2(C)⊗M2(C) M2(C)⊗M2(C)⊗M2(C) · · ·x 7→x⊗1 x 7→x⊗1

and we take the limit. These inclusions look like

x 7→
[
x 0
0 x

]
.

The elements of an infinite tensor product are elements that look like

x1 ⊗ x2 ⊗ x3 ⊗ · · · ⊗ xn ⊗ 1⊗ 1⊗ · · ·

for some n.
The algebra R0 has a trace state given by

τ(x1 ⊗ · · · ⊗ xn ⊗ 1⊗ · · · ) = tr(x1) tr(x2) · · · tr(xn).

This is consistent if we take tr on M2(C) to be normalized. So trM2(C)(x) = trM2n+1 (C)(x)
via the above inclusions.

R0 is a *-algebra with the operator norm ‖x‖ = ‖x‖M2n (C) if x = x1 ⊗ · · · ⊗ xn ⊗ 1 ⊗
· · · . This is consistent with the inclusions because the operator norm satisfies ‖x ⊕ y‖ =
max{‖x‖, ‖y‖}. This norm satisfies the C∗ axiom: ‖x∗x‖ = ‖x‖2. Thus, (R0, ‖ · ‖) :=

(R0, ‖ · ‖)‖·‖ is a C∗-algebra, and τ extends to a trace state on R0 (exercise).

Proposition 22.1. Let x ∈ R0. If x ∈M2n(C), then

τ(x) =

∫
U(M2n (C))

uxu∗ du,

where the integral is with respect to Haar measure on the unitary group U(M2n(C)).

Remark 22.1. Since this is in finite dimensions, this is Riemann integral, uniformly con-
vergent in the operator norm

Proof. Call this integral Φ(x) ∈M2n(C). By the invariance of Haar measure,

Φ(x) = Φ(u0xu
∗
0) = u0Φ(x)u∗0.

This implies that Φ(x)u0 = u0Φ(x) for all unitary u0. So Φ(x) ∈M ′2n ∩M2n = C.
This Φ has the properties of the trace, so by uniqueness of the trace, Φ(x) = τ(x)1.
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Proposition 22.2. Let x ∈ R0. Then τ(x∗x) = 0 if and only if x = 0.

Apply the GNS construction for (R0, τ) to get the representation (πτ , Hτ , ξτ = 1̂); recall

that Hτ = R0
‖·‖τ

. So x 7→ πτ (x), which is left-multiplication by x on R̂0 = H0
τ , which

contains R̂0 as a dense subset. Also, we have τ(x) =
〈
x1̂, 1̂

〉
Hτ

.
πτ is isometric because it is isometric on each M2n(C) (since it is an injective morphism

of C∗-algebras).

Definition 22.1. The hyperfinite II1 factor (R, τ) is πτ (R0)
wo

, endowed with the trace
state τ(x) =

〈
x1̂, 1̂

〉
.

This is a von Neumann algebra.

22.2 R is a II1 factor

Proposition 22.3. τ is faithful on R (τ(x∗x) = 0 ⇐⇒ x = 0) if and only if ξτ is
separating for R.

Proof. ( =⇒ ): τ(x∗x) = ‖xξτ‖2Hτ . We have R = πτ (R0)
wo

m but we could have taken
right multiplication in the GNS construction. Also λ and ρ, left and right multiplication,
commute. So ρ(y)(x1̂) =) for all R0. Thus, ρ(y)(x1̂) = 0 for all y ∈ R0, so [R, ρ(R0)] = 0.
So if x1̂ = 0, then ρ(y)x(1̂) = 0 = x(ρ(y)1̂) = xy = x(ŷ) = 0. This implies that x(Hτ ) = 0,
so x = 0.

τ on R is a faithful trace. In particualar, R is finite.

Proposition 22.4. (R, τ) is a II1 factor.

Proof. Assume z ∈ (Z(M))1. Then there exists some xi ∈ (R0)1 such that πτ (xi)
so−→ z by

Kaplansky’s theorem. We have

‖πτ (xi)1̂− z(1̂)‖Hτ → 0 ⇐⇒ ‖xi − z‖τ → 0,

where ‖xi−z‖τ = ‖uxix∗−z‖τ for any unitary u. But for each fixed i, if x ∈M2ni (C), then
‖
∫
uxiu

∗− z du‖τ ≤ ‖uxiu∗− z‖τ for all unitary u. But the left hand side is ‖τ(xi)− z‖τ .
Therefore, ‖z − c1̂‖τ = 0. But τ is faithful, so z = c1̂ is a scalar.
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23 Every II1 Factor Has a Trace

This note is based on a set of slides Professor Popa used for the lecture.

23.1 Theorem and the hyperfinite II1 factor

Last time, we defined the hyperfinite II1 factor by constructing R0 with the trace state
τ . We can define the Hilbert space L2(R0) as the completion of R0 with respect to the

Hilbert-norm ‖y‖2 = τ(y∗y)1/2, and denote R̂0 as the copy of R0 as a subspace of L2(R0).
For each x ∈ R0, define the operator λ(x) on L2(R0) by λ(x)(ŷ) = x̂y for all y ∈ R0.

Note that x 7→ λ(x) is a *-algebra morphism R0 → B(L2) with ‖λ(x)‖ = ‖x‖ for all x.
Moreover, 〈λ(x)(1̂), 1̂〉L2 = τ(x).

We can similarly define ρ(x) to be the right multiplication operator. Then λ and ρ
commute. Last time, we showed that the von Neumann algebra R = λ(R0)

wo
is a II1

factor.
One other way to define R is as the completion of R0 in the topology of convergence

in hte norm ‖x‖2 = τ(x∗x)1/2 of sequences that are bounded in the operator norm. Notice
that, in both definitions, τ extends to a trace state on R. If one denotes by D0 ⊆ R0 the
natural “diagonal subalgebra,” then (D0, τ |D0) coincides with the algebra of dyadic step
functions on [0, 1] with the Lebesgue integral. So its closure in R in the above topology,
(D, τ |D) is just (L∞([0, 1]),

∫
dµ).

Also, (R0, τ) (and thusR) is completely determined by the sequence of partial isometries
v1 = e1

1,2, vn = (
∏n−1
i=1 e

i
2,2)en1,2 for n ≥ 2 with pn = vnv

∗
n; these satisfy τ(pn) = 2−n and

pn ∼ 1−
∑n

i=1 pi.

Theorem 23.1. Let M be a von Neumann factor. The following are equivalent:

1. M is a finite von Neumann algebra; i.e. if p ∈ P (M) satisfies p ∼ 1 = 1M , then
p = 1 (any isometry in M is necessarily a unitary element).

2. M has a trace state (i.e. a functional τ : M → C that is positive, τ(x∗x) ≥ 0,
τ(1) = 1, and τ(xy) = τ(yx) for all x, y ∈M).

3. M has a trace state τ that is completely additive (i.e. τ(
∑

i pi) =
∑

i τpi) for for
all mutually orthogonal projections P(M).

4. M has a trace state τ that is normal (i.e. τ(supi xi) = supi τ(xi) if (xi)i ⊆ (M+)1

is an increasing net).

So a von Neumann factor is finite if and only if it is tracial. Moreover, such a factor has
the unique trace state τ , which is automatically normal, faithful, and satisfies co{uxu∗ :
u ∈ U(M)} ∩ C1 = {τ(x)1} for all x ∈M .

These are progressively stronger conditions, so we need only show that (4) =⇒ (1).
We need some lemmas.

64



23.2 Projections in a finite von Neumann factor

Lemma 23.1. If a von Neumann factor M has a minimal projection, then M = B(`2(I))
for some I. Moreover, if M = B(`2(I)), then the following are equivalent:

1. M has a trace

2. |I| <∞.

3. M is finite, i.e. if u ∈M with u ∗ u = 1, then uu∗ = 1.

Proof. If we have a trace in finite dimensions, split 1 = p1 + p2 into two projections onto
infinite dimensional subspaces. Since trace is additive and p1 ∼ p2, τ(p1) = τ(p2) = 1. Do
the same with p2 to get p3 and p4. But then 1 = p1 + p3 + p4, where τ(p1) = τ(p3) =
τ(p4) because these projections are equivalent. But this gives τ(p1) = 1/3, which is a
contradiction.

Lemma 23.2. If M is finite, then

1. If p, q ∈ P (M) are such that p ∼ q, then 1− p ∼ 1− q.

2. pMp is finite for all p ∈ P (M); i.e. if q ∈ P (M) and q ≤ p with q ∼ p, then q = p.

Proof. Use the comparison theorem.

Lemma 23.3. If M is a von Neumann factor with no atoms (so p ∈ P (M) has dim(pMp) =
∞), then there exist P0, P1 ∈ P (M) with P0 ∼ P1 and P0 + P1 = p.

So we can split p into two equivalent projections.

Proof. Consider the family F = {(p0
i , p

1
i )i : p0

i , p
1
j mut. orth.,≤ p, p0

i ∼ p1
i } with the order-

ing from inclusion. Obtain a maximal element of F . If (p0
i , p

1
i )i∈I is a maximal element,

then P0 =
∑

i p
0
i and P1 =

∑
o p

1
i will do; if not then the comparison theorem gives a

contadiction.

Lemma 23.4. If M is a factor with no minimal projections, there exists a sequence of
mutually orthogonal projections (pn)n ⊆ P (M) such htat pn ∼ 1−

∑n
i=1 pi for all n.

Proof. Apply the previous lemma recursively.

Lemma 23.5. If M is a finite factor and (pn)n are as in the previous lemma, then

1. If p ≺ pn for all n, then p = 0. Equivalently, if p 6= 0, there exists some n such that
pn ≺ p. Moreover, if n is the first integer such that pn ≺ p and p′n ≤ p with p′n ∼ pn,
then p− p′n ≺ pn.
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2. If (qn)n ⊆ P (M) is increasing, qn ≤ q ∈ P (M), and q − qn ≺ pn for all n, then
qn ↗ q (with SO convergence).

3.
∑

n pn = 1.

Proof. If p ∼ p′n ≤ pn for all n, then P =
∑

n p
′
n, and P0 =

∑
k p
′
2k+1 satisfy P0 < P and

P0 ∼ P . This contradicts the finiteness of M .

Lemma 23.6. Let M be a finite factor without atoms. If p ∈ P (M) is nonzero, then there
is a unique infinite sequence 1 ≤ n1 < n2 < · · · such that p decomposes as p =

∑
k≥1 p

′
nk

for some (pnk)k ⊆ P (M) with p′nk ∼ pnk for all k.

Proof. Apply part (1) of the previous lemma recursively. By part (2), the sum converges
to p.

Definition 23.1. If M is a finite factor without atoms, the dimension is dim : P (M)→
[0, 1] given by dim(p) = 0 if p = 0 and dim(p) =

∑∞
k=1 2−nk if p 6= 0, where n1 < n2 < · · ·

are gven by the previous lemma.

Lemma 23.7. dim satisfies the following conditions:

1. dim(pn) = 2−n.

2. If p, q ∈ P (M), then p ≤ q iff dim(p) ≤ dim(q).

3. dim is completely additive: if qi ∈ P (M) are mutually orthogonal, then dim(
∑

i qi) =∑
i dim(qi).

23.3 The Radon-Nikodym trick

We claim that dim extends to the trace τ on (M)+ in the following way. If 0 ≤ x ≤ 1,
then x =

∑∞
n=1 2−nen. So if we put τ(x) =

∑
2−n dim(en), this is well-defined. Now if

x ∈ (M)h, we can take τ(x) = τ(x+)− τ(x−). And then we can extend this to M . But we
have a problem; we cannot tell that this τ is linear.

Lemma 23.8 (“Radon-Nikodym trick”). Let ϕ,ψ : P (M) → [0, 1] be completely additive
functions with ϕ 6= 0 and ε > 0. There exists a p ∈ P (M) with dim(p) = 2−n for some
n ≥ 1 and θ ≥ 0 such that θϕ(q) ≤ ψ(q) ≤ (1 + ε)θϕ(q) for all q ∈ P (pMp).

Intuitively, we want to think of ϕ,ψ like measures. In other words, we can take a small
part of the space where ϕ and ψ are almost multiples of each other.

Proof. Denote F = {p : ∃ns.t.p ∼ pn}. We may assume ϕ is faithful: take a maximal
family of mutually orthogonal nonzero projections (ei) with ϕ(ei) = 0 for all i. Then let
f = 1−

∑
i ei 6= 0 (because ϕ(1) 6= 0); it follows that ϕ is faithful on fMf , and by replacing
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with some f0 ≤ f in F , we may also assume f ∈ F . Thus, proving the lemma for M is
equivalent to proving it for fMF , which amounts to assuming ϕ is faithful.

If ψ = 0, then we take θ = 0. If ψ 6= 0, then by replacing ϕ by ϕ(1)−1ϕ and ψ by
ψ(1)−1ψ, we may assume that ϕ(1) = ψ(1) = 1. We claim that this implies: There exists
a f ∈ F such that for all g0 ∈ F with g0 ≤ g, we have ϕ(g0) ≤ ψ(g0).

If not, then for all g ∈ F , there is a g0 ∈ F with g0 ≤ g such that ϕ(g0) > ψ(g0). Tkae
a maximal family of mutually orthogonal projections (gi)i ⊆ F with ϕ(gi) > ψ(gi) for all
i. If 1 −

∑
i gi 6= 0, then take g ∈ F with g ≤ 1 −

∑
i gi and apply this condition to get

g0 ∈ F with g0 ≤ g and ϕ(g0) > ψ(g0), contradicting maximality. Thus,

1− ϕ
(∑

i

gi

)
=
∑
i

ϕ(gi) >
∑
i

ψ(gi) = ψ

(∑
i

gi

)
= ψ(1) = 1,

a contradiction. So this case is impossible.
Define θ = sup{θ′ : θ′ϕ(g0) ≤ ψ(g0) ∀g0 ≤ g, g0 ∈ F}. Then 1 ≤ θ < ∞, and

θϕ(g0) ≤ ψ(g0) for all g0 ∈ F with g0 ≤ g. Moreover, by definition of θ, there exists some
g0 ∈ F with g0 ≤ g such that θϕ(g0) > (1 + ε)−1ψ(g0). We now repeat the argument for
ψ and θ(1 + ε)ϕ on g0Mg0 to prove the following:

We claim that there exists some g′ ∈ F with g′ ≤ g0 such that for all g′0 ∈ F with
g′0 ≤ g0, we have ψ(g′0) ≤ θ(1 + ε)ϕ(g′0). If not, then for all g′ ∈ F with g′ ≤ g0, there is a
g′0 ≤ g′ in F such that ψ(g′0) > θ(1 + ε)ϕ(g′0). But then take a maximal family of mutually
orthogonal g′i ≤ g0 such that ψ(g′i) ≥ θ(1 + ε)ϕ(g′i). Using one of the previous lemmas, we
get

∑
i g
′
i = g0. Then ψ(g0) ≥ θ(1 + ε)ϕ(g0) > ψ(g0). This is a contradiction. So the claim

holds for some g;∈ F with g′ ≤ g0. Taking p = g′, we get that any q ∈ F under p satisfies
both θϕ(q) ≤ ψ(q) and ψ(q) ≤ θ(1 + ε)ϕ(q). By complete additivity of ϕ and ψ, using a
previous lemma, we are done.

Now apply the lemma to ψ = dim and ϕ to be a vector state on M ⊆ B(H) to get the
following:

Lemma 23.9. For all ε > 0, there exists some p ∈ P (M) with dim(p) = 2−n for some
n ≥ 1 and a vector state ϕ0 on pMp such that for all q ∈ P (pMp), (1 + ε−1ϕ0(q) ≤
2n dim(q) ≤ (1 + εϕ0(q).

We want to reproduce the linearity of the dimension function on pMp to the whole
space.

Lemma 23.10. With p, ϕ0 as above, let v1 = p, v2, . . . , v2n ∈ M such that viv
∗
i = p and∑

i viv
∗
i = 1. Let ϕ(x) :=

∑2n

i=1 ϕ0(vixv
∗
i ) for x ∈ M . Then ϕ is a normal state on M

satisfying ϕ(x∗x) ≤ (1 + ε)ϕ(xx∗) for all x ∈M .

Proof. Note first that ϕ0(x∗x) ≤ (1 + ε)ϕ0(xx∗) for all x ∈ pMp (do it first for when x is
a partial isometry, then for x with x∗x having finite spectrum). To deduce the inequality
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for ϕ itself, note that if
∑

j v
∗
j vi = 1, then for any x ∈M ,

ϕ(x∗x) =
∑
i

ϕ0

(
vix
∗
(∑

j

v∗j vj

)
xv∗i

)
=
∑
i,j

ϕϕ0((vix
∗v∗j )(xjxvi))

≤ (1 + ε2)
∑
i,j

ϕ0((vjxvi)(vix
∗v∗j ))

= · · ·
= (1 + ε2)ϕ(xx∗).

Lemma 23.11. If ϕ is a state on M that satisfies ϕ(x∗x) ≤ (1 + ε)ϕ(xx∗) for all x ∈M ,
then (1 + ε)−1ϕ(p) ≤ dim(p)(1 + ε)ϕ(p) for all p ∈ P (M).

Proof. By complete additivity, it is sufficient to prove it for p ∈ F , when we have v1, . . . , v2n

as in the previous lemma. Then ϕ(p) = ϕ(v∗j vj) ≤ (1 + ε)ϕ(vjv
∗
j ) for all j, so

2nϕ(p) ≤ (1 + ε)2
∑
j

ϕ(vjv
∗
j ) = (1 + ε)22n dim(p).

Similarly, 2n dim(p) = 1 ≤ (1 + ε)22nϕ(p).

23.4 Proof of the theorem

Now we can prove the theorem.

Proof. Define τ as mentioned before. By the previous lemma, for every ε > 0, there is
a normal state ϕ on M such that |τ(p) − ϕ(p)| ≤ ε for all p ∈ P (M). By definition of
|tau and the linearity of ϕ, this implies that |τ(x) − ϕ(x)| ≤ ε for all x ∈ (M+)1. So
|τ(x)− ϕ(x)| ≤ 4ε for all x ∈ (M)1. This implies that τ(x+ y)− τ(x)− τ(y)| ≤ 8ε for all
x, y ∈ (M)1. Since ε > 0 was arbitrary, we get that τ is a linear state on M .

By definition of τ , we also have τ(uxu∗) = τ(x) for all x ∈ M and u ∈ U(M). So τ is
a trace state. From the above argument it also follows that norm limit of normal states ϕ,
so τ is normal as well.

This theorem also has a generalization.

Theorem 23.2. Let M be a von Neumann algebra that is countably decomposable (i.e.
any family of mutually orthogonal projections is countable). The following are equivalent:

1. M is a finite von Neumann algebra; i.e. if p ∈ P (M) satisfies p ∼ 1 = 1M , then
p = 1 (so any isometry in M is necessarily a unitary element).
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2. M has a faithful, normal (equivalently completely additive) trace state τ .

Moreover, if M is finite, then there exists a unique normal faithful central trace, i.e. a
linear positive map ctr : M → Z(M) that satisfies ctr(1) = 1, ctr(z1xz2) = z1 ctr(x)z2, and
ctr(xy) = ctr(yx) for al lx, y ∈M and zi ∈ Z.

Any trace τ on M is of the form τ = ϕ0 ◦ ctr for some state ϕ on Z. Also, co{uxu∗ :
u ∈ U(M)} ∩ Z = {ctr(x)} for all x ∈M .

The central trace should be thought of like a conditional expectation onto Z(M).
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24 The Group Measure Space von Neumann Algebra Con-
struction

24.1 Measure-preserving actions of groups

Up to now, our only examples of II1 factors have been

• the hyperfinite II1 factor R,

• the group von Neumann algebra L(Γ), where Γ is ICC.

Here is another class of examples of II1 factors.

Definition 24.1. Let Γ be a discrete, countable group, and let (X,µ) be a standard,
nonatomic probability space. A measure-preserving action Γ �σ X is a collection of
measure-preserving (µ(aσ−1

g A) = µ(A)) maps σg : X → X that are invertible (mod null
sets) such that σ : Γ→ Aut(X,µ) sending g 7→ σg is a group homomorphism.

By Aut(X,µ), we mean automorphisms of X as a measure space. A measure-preserving
α gives rise to an map α∗ ∈ Aut(L∞(X,µ),

∫
dµ) given by α∗(f) = f ◦ α−1. The ac-

tion Γ �σ (X,µ) induces σ∗, an action of Γ on (L∞(X,µ),
∫
dµ) by (σ∗)g(f) = f ◦

(σg)
−1; in particular, (σ∗)g(σ

∗)h = (σ∗)gh. That is, we gave a homomorphism σ∗ : Γ →
Aut(L∞(X,µ),

∫
· dµ), where this is the group of automorphisms of L∞(X) preserving∫

· dµ. We will denote this action by Γ �σ (L∞(X,µ),
∫
· dµ), suppressing the star nota-

tion.
Surprisingly, we can go back!

Theorem 24.1 (von Neumann). Let β ∈ Aut(L∞(X,µ),
∫
· dµ). Then there exists a

unique α ∈ Aut(X,µ) such that α∗ = β.

24.2 Construction of the algebra

Here, A = L∞ is a von Neumann algebra. Form the vector space AΓ of finitely supported
sums

∑
g agug : ag ∈ A}. We can turn this into an algebra by introducing the multiplication

(agug) · (ahuh) = agσg(ah)ugh.

This gives us an algebra where ugahu
−1
g = σg(ah). Moreover, this is a *-algebra by

(agug)
∗ = ug−1ag = σg−1(ag)ug−1 .

We also have the functional

τ
(∑

agug

)
=

∫
ae dµ.

Proposition 24.1. τ is a trace state.
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Proof. We want to show that τ((agug) · (ahuh)) = τ((ahuh) · (agug)). That is, we want to
show that

δgh,e

∫
agσg(ah) dµ = δhg,e

∫
ahσh(ag) , dµ.

Replacing h = g−1, this is ∫
agσg(ag−1) dµ =

∫
ahσh(ah−1) dµ

If we apply σh−1 to the right hand side, since σh−1 preserves the integral, we get∫
σh−1(ah)ah−1 dµ.

So these are the same.

Now we can define L2(Γ � X), the completion of (AΓ, 〈·, ·〉τ ). This completion is nat-
urally isomorphic to `2(Γ, L2(X)). Alternatively, we can identifying it with the following:⊕

g∈Γ(L2(X,µ))g. We can also write it like {
∑

g ξgug : ξg ∈ L2(X),
∫ ∑

g∈Γ |ξg|2 dµ <∞}.
That is, we want

∑
g∈Γ ‖ξg‖2L2(X) <∞.

Example 24.1. If X is a single point, then A = C. So this gives `2(Γ).

On L2(Γ � X), we define operators of left multiplication and right multiplication by
elements in AΓ; this gives x =

∑
g cgug 7→ λ(x) or ρ(x). In particular, the operation is

λ(agug)
∑
h

ξhuh =
∑
h

agugξhuh =
∑
h

agσg(ξh)ugh =
∑
h′

agσg(ag−1h′)uh′ .

So we have two representations of the *-algebra AΓ on L2(Γ � X). Check that λ(x∗) =
λ(x)∗ and τ(x) =

〈
λ(x)1̂, 1̂

〉
τ
, where 1̂ is the series with the only nonzero coefficient u1 and

ξ1 to be the constant 1 function.

Definition 24.2. The group measure space construction is the von Neumann algebra
L(Γ � X) := λ(AΓ)

wo ⊆ B(L2(Γ � X)) (and similarly for R).

24.3 Properties of the algebra

We can extend τ to the whole space by τ(x) :=
〈
x(1̂), 1̂

〉
.

Theorem 24.2. (L(Γ � X), τ) and (R(Γ � X), τ) are tracial von Neumann algebras (and
thus finite) with the faithful, normal trace τ .

Theorem 24.3. The left and right group measure space constructions are each other’s
commutants. That is, L(Γ � X)′ = R(Γ � X) and R(Γ � X)′ = L(Γ � X).
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In fact, if ξ =
∑

g ξgug ∈ L2(Γ � X) and η is similar, then we have the formal product

ξη ∈ `∞(Γ, L1(X)). Then we call ξ a convolver if ξη ∈ L2(Γ � X) for all η ∈ L2(Γ � X).
Then we get a characterization of L(Γ � X) in terms of left multiplication by convolvers,
just like in the L(Γ) case.

Observe that A = L∞(X,µ) sits inside L(Γ � X) as the algebra a 7→ aue.

Theorem 24.4. Let Γ � X be a measure-preserving action.

1. A ⊆ M = L(Γ � X) is maximal abelian in M (i.e. A′ ∩M = A) if and only if
Γ � X is essentially free (i.e. µ({t ∈ X : gt = t}) = 0 for all g 6= e).

2. If Γ � X is essentially free, then M is a factor if and only if σ is ergodic (if
a ∈ L∞(X) and σg(a) = a for all g, then a ∈ C1). So if Γ is infinite, then M is a
II1 factor.
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25 Student Presentations

In this class, every enrolled student gave a presentation on a topic. Here are notes I took
for each presentation.

25.1 Kadison’s transitivity theorem

Definition 25.1. If M is a C∗-algebra acting on a Hilbert space H, M is said to act
topologically irreducibly if H has no proper, closed, invariant subspaces under M . M
is said to act algebraically irreducibly if H has no proper, invariant subspaces under
M .

From the definitions, we have that algebraically irreducible C∗-algebras are topologi-
cally irreducible.

Theorem 25.1 (Kadison’s transitivity theorem). If M is topologically irreudicble, it is
algebraically irreducible.

Why is this called the transitivity theorem? We will show that M acts n-transitively
on H; i.e. for all linearly independent x1, . . . , xn ∈ H and any y1, . . . , yn ∈ H, there is an
A ∈M such that Axi = yi for all 1 ≤ i ≤ n.

Lemma 25.1. Let x1, . . . , xn ∈ H be orthonormal, and let z1, . . . , zn ∈ H with ‖zi‖ ≤ r.
Then there exists an operator B ∈ B(H) such that Bxi = zi for all i and ‖B‖ ≤

√
2nr. If

there is a selfadjoint T with Txi = zi, then we can take B to be self-adjoint.

Proof. Extend x1, . . . , xn, xn+1, . . . , xm to an orthonormal basis for C{x1, . . . , xn, z1, . . . , zn}
(m < 2n). Let B̃ be the matrix induced by splitting up the zi according to this basis. Then

[B̃] =
√∑

|αi,j |2 ≤ (2n · r2)1/2 =
√

2nr.

Extend it by making it 0 on the orthogonal complement.

Proof. Assume x1, . . . , xn are orthonormal, so x1, . . . , xn
B−→ y1, . . . , yn. By changing basis

and conjugating by change of basis operators, we can get this result for arbitrary sets.
Choose B0 such that B0xi = yi. Take A0 ∈ M such that ‖A0xi = yi‖ ≤ 1

2
√

2n
; this is

possible because M is topologically irreducible. Choose B1 such that B1xi = yi − A0xi
and ‖B1‖ ≤ 1

2 . By Kaplansky’s density theorem, choose A1 ∈M such that ‖A1‖ ≤ 1
2 and

A1xi −B1xi‖ ≤ 1
4
√

2n
.

Continue recursively: Suppose we have defined Bk such that ‖Bk‖ ≤ 1
2k

and Bkxi =

yi −A0xi −A1xi − · · · −Ak−1xi. Choose Ak ∈M such that ‖Ak‖ ≤ 1
2k

, ‖Akxi −Bkxi‖ ≤
1

2k+1
√

2n
. Choose ‖Bk+1‖ ≤ 1

2k+1 with Bk+1xi = yi−A0xi−A1xi− · · ·−Akxi. If Txi = yi,
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we can choose the Bk and thus the Ak to be self-adjoint by Kaplansky’s theorem. Let
A =

∑∞
k=0Ak, This converges in norm to an element of M . Moreover,

yi −Axi = yi −
∞∑
k=0

Akxi = lim
k

(yi − a0xi −A1xi − · · · −Akxi) = lim
k

(Bk+1xi) = 0

because ‖xi‖ = 1 and ‖Bk+1‖ ≤ 1/2k+1. This proves n-transitivity and thus Kadison’s
theorem.

25.2 Dixmier’s averaging theorem

Theorem 25.2 (Dixmier’s averaging theorem). Let M be a von Neumann algebra with
center Z(M). For each x ∈ M , denote by K(x) the norm closure of the convex hull of
{uxu∗ : u ∈ U(M)}. Then K(x) ∩ Z(M) 6= ∅.

The bulk of the proof is in the following lemma.

Lemma 25.2. If x = x∗ ∈M , there is a u ∈ U(M) and y = y∗ ∈ Z(M) such that∥∥∥∥1

2
(x+ u∗xu)− y

∥∥∥∥ ≤ 3

4
‖x‖.

Proof. Suppose ‖x‖ = 1. Define projections p = 1[0,1](x) and q = 1[−1,0](x). By the
comparison theorem, there exists some z ∈ P (Z(M)) such that zq ≺ zp and (1 − z)p ≺
(1 − z)q. Take p1, p2, q1, q2 such that zq ∼ p1 ≤ p1 + p2 = 2p and (1 − zp) ∼ q − 1 ≤
q1 + q2 = (1− z)q.

Take two partial isometries v, w ∈ M with c∗c = w and vv∗ = p, w∗w = (1 − z)p,
vv∗ = q. Define u = v + v∗ + w + w∗ + p2 + q2. Then

u = v∗v + vv∗ + w8w + ww∗ + q2 + p2

= zq + p2 + (1− z)p+ q1 + q2 + p2

= p+ q

= 1.

Also,
u∗p1u = zq, u∗q1u = (1− z)p u∗p2u = p2,

u∗zqu = p1, u∗(1− z)pu = q1, u∗q2u = q2.

We have −zq ≤ zx ≤ zp = p1 + p2. So

=⇒ −p1 ≤ zu∗xu ≤ zq + p2

=⇒ −1

2
(zq + p1) ≤ 1

2
(zx+ zu∗xu) ≤ 1

2
zq + p1 + p1
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=⇒ 1

2
z ≤ 1

2
(2x+ zu∗xu) ≤ z

=⇒ −3

4
≤ 1

2
(2x− zu∗xu)− 1

4
z ≤ 3

4
z.

Similarly, repeating this with 1− z gives

−3

4
(1− z) ≤ 1

2
((1− z)x+ (1− z)u∗xu) +

1

4
(1− z) ≤ 3

4
(1− z).

If we add these together, we get∥∥∥∥1

2
(z + u∗xu)− 2z − 1

4

∥∥∥∥ ≤ 3

4
.

Proof. Let K denote the set of maps α : M → M of the form α(x) =
∑n

i=1 ciu
∗
ixui with

ui ∈ U(M),
∑

i ci = 1 and ci ≥ 0. For general x ∈ M denote a0 = Re(x) and b0 = Im(z).
By the lemma, there exist some u ∈ U(M) and y1 = y∗1 ∈ Z(M) with∥∥∥∥1

2
(a0 + u∗a0u)− y1

∥∥∥∥ ≤ 3

4
‖a0‖.

Denote α1(x) = 1
2(x+ u∗xu) and a1 = α1(a0). Use the lemma again on a1 − y1. Continue

inductively.
Given any ε > 0, we can find α ∈ K and y ∈ Z(M) for which ‖α(a0)−y‖ < ε. Similarly,

given this α, we can find β ∈ K and z ∈ Z(M) for which ‖β(α(b0))− z‖ < ε. Thus,

‖β(α(a0))− y‖ = ‖β(α(a0)− y)‖ ≤ ‖α(a0)− y‖ < ε.

Therefore,
‖β(α(x))− (y + iz)‖ < 2ε

The problem is that y+ iz might be dependent on ε. To fix that, we define a sequence
(Γn) ⊆ K and (zn) ⊆ Z(M) such that if x0 = x and xn = γn(xn−1), we have ‖xn−zn‖ ≤ 1

2n .
Thus,

‖xn+1 − xn‖ = ‖γn+1(xn − zn)− (xn − zn)‖ ≤ ‖γn+1(xn − zn)‖+ ‖xn − zn‖ <
1

2n−1
.

Thus, xn → x and zn → x, so x ∈ K(x) ∩ Z(M).

25.3 The Ryll-Nardzewski fixed point theorem

I gave this presentation. See my notes on the subject.
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25.4 `1(Z) is not a C∗-algebra

Theorem 25.3. `1(Z) is not a C∗-algebra.

Theorem 25.4. Let ϕ ∈ C(S1) with ϕ(z) = 0 for all z ∈ S1. Then ϕ̂ ∈ `∞(Z), x̂ϕ ∈
`∞(Z).

These are consequences of the following fact.

Theorem 25.5. Let Ω(`1(Z)) be the maximal ideal space of `1(Z). Ω(`1(Z)) ∼= S1, where
Ω(`1(Z)) is equipped with the weak topology in (`1(Z))∗ ∼= `∞(Z).

Proof. Let i denote the natural isomorphism from (`1(Z))∗ → `∞. We claim that i(Ω(`1(Z))) =
{α ∈ `∞(Z) : α(m+ n) = α(m)α(n)}.

For any ϕ ∈ Ω(`1(Z)) with i(ϕ) = αϕ,

αϕ(m+ n) =
∑

δm+nαϕ = ϕ(δm+n) = ϕ(δm ∗ δn) = ϕ(δm)ϕ(δn) = αϕ(m) · αϕ(n).

On the other hand, if α(m+ n) = α(m) · α(n), then

i−1(α)(f ∗ g) =
∑

(f ∗ g)α
∑
i

∑
j

f(i− j)g(j)α(i)

=
∑
j

∑
i

f(i− j)g(j)α(i− j)α(j)

= 〈g, α〉 〈f, α〉
= i−1(α(f)) · i−1(α(g)).

Now observe that α(m) = (α(1))m, which gives a bijection Ẑ→ A1 by α 7→ α(1). These
spaces are compact, so we only need to check continuity of the map to get a homeomor-

phism. If αi
wk−−→ α, then

αi(1) =
∑

δ1αi →
∑

δ1α = α(1).

So we get that S1 ∼= Ẑ ∼= Ω(`1(Z)).

Now we can show that `1(Z) is not a C∗-algebra.

Proof. Assume `1(Z) is a C∗-algebra. Then by the Gelfand transform, `1(Z) ∼= C(S1).
Then Γ(`1(Z)) = {ϕ ∈ C(S1) : ϕ̂ ∈ `1(Z)}.

We claim that Γ̂(f) = f , where f ∈ `1(Z). If Γ(f) ∈ C1(S1), then Γ(f)(z) = 〈f, zn〉 =∑
f(n)zn. We check

Γ̂(f)(n) =
1

2π

∫ 2π

0

∑
f(n)einx)einx dx = f(n).
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We now claim that if ϕ ∈ C(S1) then ϕ̂ ∈ `1(Z). We have

∧(Γ(ϕ̂)− ϕ)− Γ̂(ϕ̂)− ϕ̂ = 0

by the first claim.

Here is the proof of the other result.

Proof. Γ(f) is invertible if and only if f is invertible. Then if ϕ = Γ(f), then 1/ϕ =
Γ(f−1).

25.5 There are no nontrivial projections in C∗red(F2).

This is a presentation about Effros’ paper, “Why the circle is connected.” In a more
concrete sense, this is about the fact that the reduced C∗-algebra of Fn has no nontrivial
projections.

To begin, let’s motivate and define a connected C∗-algebra by examining C(X) for a
compact topological space X. If X is connected and P ∈ Proj(C(X)), then P = 0 or 1.
This is because P−1((1/2,∞)) and P−1((−∞, 1/2)) cover X. So we define connectedness
for a C∗-algebra as follows.

Definition 25.2. A C∗-algebra M is connected if Proj(M) = {I, 0}.

Consider C(S1). By Fourier series, C(S1) ∼= C∗red(Z), the reduced C∗-algebra. Z is the
free group on 1 generator. This is why this is related to the circle.

Theorem 25.6. There are no nontrivial projections in C∗red(F2).

With slight modifications, the argument we will make will generalize, with modifications
to Fn. The idea is that we will get two traces on C∗red(F2), one of which (ordinary trace -
tr) is always Z-valued on projections, and the other, τ , is faithful and unital. Then we will
find τ in terms of tr and use the following lemmas.

Lemma 25.3. If τ is

1. faithful (τ(a∗a) ≥ 0 for all a with τ(a∗a) = 0 =⇒ a = 0),

2. unital (τ(1) = 1),

3. tracial (τ(ab) = τ(ba)),

then τ(Proj(M)) ⊆ Z. So there are no nontrivial projections.

Proof. Let P be a projection. Since P ∗P = P , τ(P ∗P ) = τ(P ) ≥ 0 (with equality iff
P = 0). The same is true for 1 − P . So 0 ≤ P ≤ 1. But τ(P ) = 0 or 1. If the former
occurs, then since τ is faithful, P = 0. If the latter occurs, τ(1− P (= τ(1)− τ(P ) = 0, so
1− P = 0. So P = 1.
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Lemma 25.4. Let P,Q be projections in B(H) and suppose that P −Q is trace class (i.e.
tr(|P −Q|) <∞, so tr(P −Q) is independent of basis). Then tr(P −Q) ∈ Z.

Here, tr(A) =
∑

k 〈ek, Aek〉, where ek is an orthonormal basis of the space.

Proof. First, note that

P (P −Q)2 = P (P +Q− PQ−QP )

= P + PQ− PQ− PQP
= P − PQP,

(P −Q)2P = (P +Q− PQ−QP )P

= P − PQP.

So P (P −Q)2 = (P −Q)2P . Similarly, Q(P −Q)2 = (P −Q)2Q. So (P −Q)2 is positive,
and tr((P −Q)) <∞, so (P −Q)2 is a Hilbert-Schmidt operator. So (P −Q)2 is compact.

We get from the spectral theorem that

(P −Q)2 =
∑
k

λkPk,

where λk are eigenvalues with λk > 0 and Pk are projections. We can take λ1 > λ2 > λ3 >
· · · , and we have limk→∞ λk = 0. Define q = 1−

∑
k Pk. Observe that (P −Q)q = 0, as

〈P −Q)qx, (P −Q)qx〉 =
〈
qx, (P −Q)2qx

〉
=

〈
qx,
∑
k

λkPkqx

〉
= 0,

where Pkq = 0 for all k. Also, PPk = PkP and QPk = PkQ (as Pk = fk((P − Q)2) for
some continuous fk on Spec((P −Q)2)). So

P −Q =
∑
k

(P −Q)Pk =
∑
k

PPk −
∑
j

QPj .

This gives us that

tr(P −Q) =
∑

tr((P −Q)Pk) =
∑
k

tr(PPk)− tr(QPk).

Moreover, tr(PPk) and tr(QPk) are integers because they are finite dimensional projections
(The trace of a finite dimensional projection is its dimension.)
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We can show that a set is connected by showing that any probability measure on the
set gives 0 or 1 measure to a clopen set. This will be similar to what we are doing. The
trace we will define will be analogous to integrating against Lebesgue measure.

The second trace we are interested in is τF2 given by

τ(a) = 〈e1, λ(a)e1〉

where a ∈ C∗red(F2), and λ is left multiplication.

Remark 25.1. Suppose a =
∑
ag`g. Then 〈eh, agegh〉 = agδh,gh, so g = 1 = a1. Such a

trace is faithful and unital (done in class).

Compare this to tr(a): The trace tr is a sum of terms like

〈eg, λ(a)eg〉 = 〈e1, λ(a)e1〉 = τ(a).

We have λ : C∗red(F2) → B(`2(F2)). We will define λ0 : C∗red(F2) → B(`2(F2)) as follows.
Write F2 = Su ∪ Sv ∪ {e}, where Su is the set of words that end with u or u−1 and Sv is
the set of words that end with v or v−1. This gives `2(F2) = Hu ⊕HV ⊕ Ce1.

Hu and Hv are isomorphic to F2 in the sense that F2 acts in the same way on them.
What is the action/representation? Define

λ0(u)e1 = 0, λ0(u)eg =

{
eug if g 6= u−1 or 1

eu g = u−1
, λ0(v)eg =

{
evg if g 6= v−1 or 1

eu g = u−1.

This defines a representation λ0 : C∗red(F2)→ B(`2(F2)) where λ0(e1) = 0; this is the only
thing in the kernel. We have λ|Hu = λ0|Hu and λ|Hv = λ0|Hv . So we get

λ0
∼= λ|Hu ⊕ λ|Hv ⊕ 0e1 .

Let’s compare λ and λ0. If a ∈ C∗red(F2), then τ(a) = 〈eg, λ(a)eg〉. On the other hand,
if s ∈ Su, then

〈es, λ0(u)es〉 = 〈et, λ(u)et〉 = τ(u)

for some t. But 〈e1, λ0(u)e1〉 = 0. So the diagonal entries of λ(u) and λ0(u) differ only at
e1. By induction on the length of a word, we get that λ(a) and λ0(a) differ only at finitely
many places for a ∈ CF2.

We want to say that τ(a) = tr(λ(a)− λ0(a)). But we don’t know that λ(a)− λ0(a) is
trace class in general. Define A0 ⊆ C∗red(F2) by a ∈ A0 if and only if λ(a)− λ0(a) is trace
class. We want to show that if P ∈ Proj(C∗red(F2)) with P 6= 0, I, then there exists an
e ∈ Proj(A0) with e 6= 0, I. But then τ(e) = tr(λ(e)− λ0(e)) ∈ Z, which is a contradiction
by the first lemma.

If a ∈ CF2, λ(a) and λ0(a) differ at only finitely many places, so λ(a)− λ0(a) is finite
rank and is hence trace class. So CF2 ⊆ A0. Since CF2 is dense in C∗red(F2), we have an
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a ∈ CF2 s.t. ‖a−P‖ < 1/3; we can choose a to be self-adjoint. Then Spec(a) is contained
in the union of some neighborhood in R about 0 and some neighborhood in R about 1.

We can’t just use continuous functional calculus, because we might get something out
of it which is not trace class. Instead, define e by

e =
1

2πi

∫
Γ
(z − a)−1 dz,

where Γ is a closed contour around the part of Spec(a) near 1. Since λ(a) and λ0(a) differ
at only finitely many places, the same is true for λ(z − a) and λ0(z − a) (and we have
a uniform bound on the dimension of ker(λ − λ0)⊥). Let Rn be the n-th approximating
Riemann sum. Then Rn → e in the operator norm topology, so |Rn| → |e| in the operator
norm. Also, ‖Rn‖ ≤ C for all n. Moreover, if A is finite rank, tr(|A|) ≤ ‖A‖ · dim(im(A)),
which gives us a uniform bound on tr(|λ((z − a)−1) − λ0((z − a)−1)|). Then use the fact
that if An → A in the operator norm and tr(|A|) ≤ C, then tr(|A|) ≤ C. Hence, e is trace
class, so τ(e) = tr(λ(e)− λ0(e) ∈ Z.
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